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Abstract

Superstarrms, which dominate stockmarkets through their large size andhighmarkups,
can distort ecient capital allocation. This paper empirically studies the asset pricing im-
plications of superstar rms through the channel of capital misallocation, measured as the
cross-sectional dispersion in the marginal product of capital (MPK). I decompose this mea-
sure intomisallocation (1) among superstars, (2) among other rms, and (3) between these
two groups. I nd that only changes in the third component, termed the "MPK spread", are
negatively priced in the cross-section of stock returns. Stocks with negative exposure to
these changes outperform stocks with positive exposure by 4.8% per year. In the long run,
a higherMPK spread predicts lower economic growth and aggregate stock returns, while in
the short run, it predicts lower innovation growth. Consistent with the ICAPM framework,
capital misallocation between superstar and non-superstar rms is a key state variable, and
its changes capture a macroeconomic risk factor.
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1 Introduction

In recent decades, the US stock markets have become increasingly concentrated. Not only did
the number of listed rms decline by 50% between 1996 and 2012 (Doidge, Karolyi, and Stulz,
2017), but also a fewnumbers of highly successfulrms, so-called "superstar"rms, have domi-
nated themarket (Kwon,Ma, andZimmermann, 2024). These developments have led to several
macroeconomic and corporate consequences, such as the decline in aggregate labor share (e.g.,
Autor, Dorn, Katz, Patterson, and Van Reenen, 2020) and contribution to GDP (e.g., Schlinge-
mann and Stulz, 2022). However, little is known about the implications for asset pricing.

This paper shows the asset pricing consequences of superstar rms through the channel
of capital misallocation. Bae, Bailey, and Kang (2021) nd that stock market concentration
is associated with capital misallocation as it impedes competition and innovation. As higher
capital misallocation hinders economic growth (David, Hopenhayn, and Venkateswaran, 2016;
Dou, Ji, Tian, and Wang, 2023), capital misallocation could be a candidate state variable that
predicts changes in investment opportunities in the Intertemporal CAPM(ICAPM) framework.

My paper nds that capital misallocation between superstar and non-superstar rms is a
key state variable and its changes capture amacroeconomic risk factor. Using the quarterly data
of US-listed rms from Compustat from 1975:Q1 to 2023:Q4, I measure capital misallocation as
the cross-sectional dispersion in the rm-level marginal product of capital (MPK) (David and
Venkateswaran, 2019) and David, Schmid, and Zeke (2022). I decompose this measure into
three components: (1) misallocation among superstar rms, (1) misallocation among non-
superstar rms, and (3) misallocation between these two groups referred to as "MPK spread".
I construct changes in the aggregate misallocation and each component and show three key
results.

First, only changes in the MPK spread, indicating capital misallocation between superstar
and non-superstar rms, are a priced risk factor. In dierent cross-sections of stock returns,
changes in the MPK spread carry a negative price of risk, implying that stocks with negative
exposure to the changes earn a higher expected return. These stocks depreciate when changes
in the MPK spread rise, making them more risky. In contrast, stocks with positive exposure to
these changes earn a lower expected return. Their returns tend to increase when changes in the
MPK spread rise, making them a hedge. The long-short portfolio sorted on individual stock
exposure to changes in the MPK spread, referred to as the MPK spread-mimicking portfolio,
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earns an expected return of −48% per year.
Second, in contrast, changes in the aggregate capital misallocation and the other compo-

nents do not carry signicant prices of risk. A spanning test analysis conrms the dominance
of the MPK spread over other components. Specically, only the MPK spread-mimicking port-
folio spans the portfolio exposed to changes in aggregate misallocation. Whereas, the portfo-
lios exposed to changes in aggregate misallocation and other components do not span theMPK
spread-mimicking portfolio.

Third, only the MPK spread is a key state variable as it predicts future economic growth.
In the long term, a higher MPK spread predicts lower consumption growth, industrial produc-
tion growth, and employment growth. In the short term, a higher MPK spread predicts lower
aggregate innovation growth and innovation growth of non-superstar rms. In contrast, aggre-
gate capital misallocation as well as the other components do not yield any predictive power.
Therefore, only capital misallocation between superstar and non-superstar rms is a candidate
state variable.

Consistent with the ICAPM, the MPK spread satises three restrictions proposed by Maio
and Santa-Clara (2012). First, the MPK spread as a state variable negatively forecasts changes
in investment opportunities, proxied by the aggregate stock returns. Second, changes in the
MPK spread as a factor earn a negative price of risk in cross-sectional tests, consistent with
the sign of forecast. Third, in the multi-factor model that includes market and changes in the
MPK spread as the factors, the market price of risk estimated from the cross-sectional tests is
economically plausible as an estimate of the coecient of relative risk aversion (RRA) of the
representative investor.

These ndings imply that a higher spread in the mean productive use of production capi-
tal between superstar and non-superstar rms discourages long-run economic growth. Thus,
changes in capital misallocation between superstar and non-superstar rms represent negative
news to investors whose marginal utility depends on consumption growth risks. In the ICAPM
framework, these changes capture a macroeconomic risk factor, highlighting superstar rms’
role in shaping the risk premium associated with capital misallocation.

FollowingAutor, Dorn, Katz, Patterson, andVanReenen (2020) andCheng, Vyas,Wittenberg-
Moerman, and Zhao (2024), I identify superstar rms as the top 5% rms in their indus-
tries based on market capitalization and market power. I estimate rm-level market power
as markup, proxied by the ratio of sales to the cost of goods sold, using the method from
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De Loecker, Eeckhout, and Unger (2020)1. I measure rm-level MPK as the log ratio of output-
to-capital. Capital includes both tangible capital (net property, plant, and equipment) and
intangible capital estimated from Eisfeldt and Papanikolaou (2013) and Eisfeldt, Kim, and Pa-
panikolaou (2020). Aggregate capital misallocation is then the dispersion in MPK across rms
in each quarter. A time series of the changes in misallocation shows that periods of high cap-
ital misallocation coincide with recessions, consistent with the countercyclical pattern of capi-
tal misallocation documented in the literature (e.g., Eisfeldt and Rampini, 2006; Bloom, 2009;
Bachmann and Bayer, 2014; Kehrig, 2015; David, Schmid, and Zeke, 2022).

To test the role of superstar rms, I examine the pricing of changes in aggregate misalloca-
tion, misallocation among superstar rms, misallocation among non-superstar rms, and the
MPK spread. The cross-sectional Fama-MacBeth regressions show that changes in the MPK
spread are signicantly and negatively priced in the cross-section of 25 size×book-to-market,
10 momentum, 25 size×investment, 25 size×operating protability portfolios. This nding is
robust to usingGiglio andXiu (2021)’s 202 portfolios. Whereas, the pricing of changes in aggre-
gate misallocation and the other two components are not robust and consistent across dierent
models and test portfolios.

Next, I create mimicking portfolios to examine individual stock exposure to changes in ag-
gregatemisallocation and each component. For each stock, I regress the quarterly excess returns
on the changes using a rolling window of 20 quarters. Then I sort stocks into quintiles based
on their beta estimates in each quarter. The value-weighted portfolios show that the average
excess returns decrease as the stock exposure to changes in the MPK spread increases. The
long-short portfolio has an average annual excess return of −48%. The abnormal returns (al-
phas) of the long-short portfolio estimated from the CAPM, the Fama and French (1992, 1993)’s
three-factor, and the Fama and French (2015)’s ve-factor models are signicantly negative.
The post-formation portfolios also show a negative beta in the lowest quintile and a positive
beta in the highest quintile. These ndings are robust when I construct an equally weighted
portfolio.

Finally, to test whether the aggregate misallocation or its components is a state variable, I
run the standard predictive regression of several futuremacroeconomic variables on the lagged
aggregate misallocation and its components. I nd that only the MPK spread predicts negative

1Additionally, I also impose the condition that superstar rms have to increase their markup shares within their
industries compared to the previous 12 quarters (3 years).
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per capita real consumption growth (nondurables and services), industrial production growth,
employment growth, and stock market returns in the next 4 to 12 quarters (1 to 3 years). The
MPK spread also predicts negative aggregate innovation growth, especially innovation growth
of non-superstar rms in the next 1 to 5 quarters. Thus, only capital misallocation between
superstars and non-superstars shows both pricing power in the cross-section and predictability
power in the time series.

Themain asset pricing results are robust to various specications. Alternative denitions of
superstars based onmarket capitalization or sales show that the top 50 rms conrm the results
in the cross-sectional asset pricing tests and predictability. Besides, the results are robust to
using dierent industry classications, a value-weightedmeasure for misallocation, separating
misallocation by tangible and intangible capital, the pre-2000s and post-2000s subsamples, and
using annual frequency.

The contribution of this paper is threefold. First, I link the macroeconomic consequences
of superstars to asset pricing. Second, I propose capital misallocation between superstars and
non-superstars as a state variable and its changes as a priced risk factor. Third, my ndings
highlight the role of superstars in shaping the price of risk associatedwith capitalmisallocation:
Superstar rms, resulting in higher capital misallocation, could prevent innovation growth and
deter economic growth, consistent with Bae, Bailey, and Kang (2021) and Kung and Schmid
(2015). Investors are willing to pay a sizeable premium to eliminate such long-run uncertainty
about economic growth.

Related literature. My paper contributes to three strands of literature. First, the literature
has documented several macroeconomic consequences of superstar rms. For example, Autor,
Dorn, Katz, Patterson, and Van Reenen (2020) argue that the rise of superstar rms leads to
a decline in the aggregate labor share.2 Schlingemann and Stulz (2022) argue that the market
capitalization of listed rms has become less informative about rms’ contribution to aggregate
output.3 Gutierrez and Philippon (2019) also nd that the contribution of superstar rms to
aggregate productivity growth has also decreased. My paper contributes to this literature by
linking one consequence of superstar rms to asset pricing.

2Technological advances push sales toward the most successful rms in the service industry whose contribution
to labor share is relatively low, leading to a decline in the aggregate labor share. Gutierrez and Philippon (2020)
also nd that the contribution of superstar rms to aggregate labor productivity has decreased.

3This is due to the decline in the manufacturing industry oriented in tangible capital and the shift towards the
service industry which favors intangible capital.
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Particularly, there has been evidence that superstar rms deter ecient capital allocation.
For instance, Bae, Bailey, and Kang (2021) nd that a concentrated stock market is less likely to
allocate capital to rms that could use capital more eciently. Su (2022) also shows that capital
misallocation increases when the economy includes superstar rms.4 De Loecker, Eeckhout,
and Unger (2020) and De Loecker and Eeckhout (2021) show that economic activity is more
reallocated toward superstar rms. Neuhann and Sockin (2024) suggest that nancial market
concentration candampen ecient capital allocation. 5 Based on this evidence,mypaper shows
that changes in capital misallocation between superstar rms and non-superstar rms capture
an asset pricing factor.

Second, several papers have shown thatmarkups are an important source of capital misallo-
cation. Peters (2020) nds that older rms improve their productivity away from competitors,
raising the markups that they can optimally charge on their existing products, consistent with
the superstar phenomenon. Capital misallocation rises as a result of a decline in creative de-
struction.6 David and Venkateswaran (2019) estimate that markup heterogeneity explains a
large share of 14% in the capital misallocation in the US. Consistently, I nd that rising markup
yields a higher MPK level for the superstars.7

Furthermore, capital misallocation is an important deterrent to economic growth (Eisfeldt
and Rampini, 2006, 2008; Eisfeldt and Shi, 2018). My paper adds to the literature by looking
at dierent components of an empirical measure of capital misallocation. I nd that only the
component that captures the misallocation between superstar rms and the rest of the rms
negatively predicts proxies for economic growth. Other components do not have predictive
power for economic growth.

Third, recent papers document asset pricing implications of superstarrms andmarket con-
4When rms face uncertainty in their product quality, superstar rms become riskier as they face more volatile

uctuations in their markups.
5Other papers also support the fact that the presence of superstars creates market ineciency. For instance,

Grullon, Larkin, and Michaely (2019) show rms in concentrated industries become more protable by higher
prot margins, rather than higher productivity. Thus, market concentration can yield prots to winners rather than
enhancing the whole economy. Covarrubias, Gutierrez, and Philippon (2020) document a "bad concentration" in
the market after the 2000s, since concentration increases the barrier to entry and reduces innovation. Gopinath,
Kalemli-Özcan, Karabarbounis, and Villegas-Sanchez (2017) also document an increase in capital misallocation in
South Europe and observe that rms with higher net worth, but not necessarily higher productivity, attract more
capital, causing productivity losses.

6Creative destruction is the extent to which new rms replace older rms to maintain competition in the market
7Baqaee and Farhi (2020) show that reallocation of market share toward high-markup rms improves the ag-

gregate TFP growth in the U.S. The intuition is that rms with high markups were too small to begin with, so the
reallocation of labor and capital toward these rms improves TFP growth over time. My paper studies superstar
rms that are very large in terms of size and markup each quarter and considers capital misallocation in a static
production function.
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centration. For example, Emery and Koëter (2024) show that rising stock market concentration
increases the size premium. Cheng, Vyas, Wittenberg-Moerman, and Zhao (2024) show in
product markets that rms with high exposure to superstars experience weaker nancial per-
formance and higher risk. Hou and Robinson (2006) shows at the industry level that rms in
more concentrated industries earn lower expected returns. Mypapernds evidence formarket-
wide concentration and that stocks negatively (positively) exposed to changes in misallocation
between superstar and non-superstar rms earn a higher (lower) expected return.

The mechanism of my paper is closely related to Dou, Ji, Tian, and Wang (2023) who show
that changes in aggregate misallocation carry a negative price of risk. As capital misallocation
prevents optimal R&D and innovation, capital misallocation captures news about long-run eco-
nomic growth.8 The source of friction that drives misallocation is nancial constraints, while
my paper studies size and market power as the main sources of friction.

Finally, my paper examines the eect of capital misallocation on risk premia. Whereas,
David, Schmid, and Zeke (2022) study the role of risks in generating misallocation and nd
that rms’ exposure to systematic risk is an important source of misallocation. Misallocation
increases in times when risk premia are high and thus is countercyclical. My paper conrms
the countercyclicality of the capital misallocation between superstar and non-superstar rms.

The remaining organization of the paper is as follows. Section 2 discusses in detail the data
and variable construction and derives a decomposition based on superstar vs non-superstar
portfolios. Section 3 shows main cross-sectional asset pricing results. Section 4 examines the
predictability for future economic growth and tests the restrictions for ICAPM. Finally, Section 5
discusses dierent tests for robustness, and Section 6 concludes.

2 Data

In this section, I discuss the data and describe the method to identify superstar rms. I discuss
the empirical measure of capital misallocation. Furthermore, I decompose the aggregate cap-
ital misallocation into three components: misallocation among superstar rms, misallocation
among other rms, and misallocation between superstars and other rms.

8Changes in misallocation are a risk factor as capital misallocation inuences the investors’ stochastic discount
factor (SDF) through its eect on consumption growth.
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2.1 Sample and variable construction

The sample contains CRSP common stocks (share codes 10 or 11) traded on NYSE, AMEX, or
Nasdaq (exchange codes 1, 2, or 3). Following the standard literature, I exclude the nancial
sector (SIC 6,000 - 6,999), utilities (SIC 4,900 - 4,999), and public administration (SIC 9,000 -
9,999), since rms in these sectors have little capital. Then, I compute quarterly stock returns
from the monthly stock le to merge with rm characteristics from Compustat Fundamentals
Quarterly. I take stock returns as of the end of a quarter and accounting variables at the end
of the previous quarter to ensure that accounting data are public on the trading date and that
market participants have access to accounting variables. The results are also robust to without
this timing convention.

I obtain rm market capitalization from Compustat (mkvaltq), which equals price times
shares outstanding (prccq × cshoq) if the value is missing. The resulting market cap is closely
identical to when I compute price times shares outstanding at quarter-end fromCRSP. All nom-
inal variables are adjusted for ination using the GDP deator (GDPDEF series from FRED at
quarterly frequency). I also exclude micro-cap stocks whose prices are less than $1 and ob-
servations with negative values for sale (Compustat saleq) and physical capital (ppentq). The
nal sample contains 590,154 unique rm-quarter observations from 1975:Q1 to 2023:Q4, as
capital is only available for most rms after 1974:Q4.

The variable for intangible capital (intanq) is often missing in Compustat. Therefore, I esti-
mate intangible capital using the perpetual inventory method from Eisfeldt and Papanikolaou
(2013) and Eisfeldt, Kim, and Papanikolaou (2020). Specically,

INTit = (1− )INTit−1 + SG&Ait (1)

where the initial value is INTi0 = SG&Ai1(g + ), g = 01, and  = 02. The estimation uses
100% SG&A (Compustat xsgaq). The Appendix reports the robust result when using 30% of
(SG&A minus R&D) plus 100% of R&D as in Peters and Taylor (2017).

Following David, Schmid, and Zeke (2022) and David, Hopenhayn, and Venkateswaran
(2016), I compute the rm-level MPK as the log ratio of output to lagged capital.9 I use sales
as output and net property, plant, and equipment (ppentq) as tangible capital plus intangible
capital estimated from Eisfeldt and Papanikolaou (2013). I exclude rm-quarter observations

9Changes in capital misallocation capture the recessions better when we take the lagged capital.
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with a ratio of intangible to tangible capital exceeding 10, because unlikely it is more than 10
times the mean ratio as discussed in David, Schmid, and Zeke (2022). Besides, I winsorize the
log MPK at 1% and 99% in each quarter to avoid outliers.

In the main analysis, the test portfolios for the Fama-MacBeth regressions include 25 size
and book-to-market, 10 momentum, 25 size and investment, 25 size and operating protabil-
ity sorted portfolios. In the robustness section, I use the 202 portfolios used in Giglio and Xiu
(2021): 25 portfolios sorted by size and book-to-market ratio, 17 industry portfolios, 25 portfo-
lios sorted by operating protability and investment, 25 portfolios sorted by size and variance,
35 portfolios sorted by size and net issuance, 25 portfolios sorted by size and accruals, 25 portfo-
lios sorted by size and beta, and 25 portfolios sorted by size andmomentum. I retrieve all factor
data at a quarterly frequency and annual frequency for a robust check from Kenneth French’s
data library10.

In addition, I construct severalmacroeconomic variables. The per capita real consumption is
the total real consumption of nondurable goods and services, divided by the total population,
obtained from the US Bureau of Economic Analysis (BEA). The industrial production index
measures the real output of all relevant establishments in the US, retrieved from the Federal
Reserve Bank of St. Louis (FRED). The monthly aggregate US unemployment rate is from the
Bureau of Labor Statistics (BLS), compounded to quarterly frequency.

Besides, following Bae, Bailey, and Kang (2021), I construct the aggregate innovation proxy
as a natural logarithm of one plus the number of patents divided by the population. The ag-
gregate number of patents are from the All Technology (Utility Patents) Reports from the US
Patent and Trademark Oce (USPTO)11. Similarly, I compute the innovation proxy in each
portfolio as the natural logarithm of one plus the total number of patents divided by the total
market capitalization in each portfolio. I use rm-level patent data from Kogan, Papanikolaou,
Seru, and Stoman (2017).

2.2 Identifying superstar firms

The literature often characterizes superstars as a top number of highly successful rms in the
economy. For example, Bae, Bailey, and Kang (2021) select the largest 5 or 10 rms in each
country based on their market cap at the end of each year. Schlingemann and Stulz (2022)

10https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
11https://www.uspto.gov/web/offices/ac/ido/oeip/taf/h_at.htm
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select the top 1, 3, 5, or 10rms in thewhole economy or 3 in each of Fama-French’s 48 industries
based on their market cap each year. Although there is no unied denition, in this paper, I
identify superstars based on Autor, Dorn, Katz, Patterson, and Van Reenen (2020)’s discussion
that superstars are rms increasingly dominating their industries, leading to rising concentration.

In each quarter, I select the top 5% rms in their SIC two-digit industries based on their
market power. To proxy rms’ market power, I estimate the rm-level markup ratio from
De Loecker, Eeckhout, andUnger (2020), i.e. 0.85 times the ratio of sale to the cost of goods sold
(0.85 × saleq/cogsq). De Loecker, Eeckhout, and Unger (2020) show that the output elasticity
of variable input 0.85 is time-invariant and contributes little to the rise in markups, so I also x
this coecient across all stocks. In some cases, the industries include less than 20 rms in a
given quarter, so I follow Cheng, Vyas, Wittenberg-Moerman, and Zhao (2024) to assign the
largest markup rm as the superstar in that industry.

As many papers identify mega-rms such as Apple and Amazon as superstars, I multiply
this markup ratio by the rm-level market cap to take into account the size of rms (0.85 ×

saleq/cogsq × market cap).12 Finally, I also impose the condition that superstar rms have to
increase their markup shares within their industries compared to the previous 12 quarters (3
years) to follow that intuition from Autor, Dorn, Katz, Patterson, and Van Reenen (2020) that
superstars increasingly dominate the market.13

2.3 Capital misallocation

In the absence of any friction, MPK should equalize across rms. TheMPK dispersion can help
to measure capital misallocation because it is proportional to aggregate TFP loss (Midrigan
and Xu, 2014). Capital misallocation is dened as the rm-level logMPKdispersion. Following
David, Schmid, andZeke (2022) andDavid, Hopenhayn, andVenkateswaran (2016), I compute
the misallocation as the cross-sectional variance across all rm MPKs within each quarter t as

σ2
mpk,t =

1

N − 1

N

i=1

(mpkit − µmpk,t)
2 (2)

where σ2
mpk,t and µmpk,t =

1
N

N
i=1mpkit denote the variance and the mean MPK of the econ-

omy.
12Cheng, Vyas, Wittenberg-Moerman, and Zhao (2024) multiply the market ratio by the sales. Robust results

show that my main ndings are robust to the choice of either sales or market cap to identify superstars.
13Figure A1 shows the rise in market concentration among superstar rms and the rise of aggregate capital mis-

allocation.
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The intuition of the capital misallocation is as follows. To minimize the total factor pro-
ductivity (TFP) loss, the economy needs to allocate capital eciently. The TFP loss is at the
minimum if rm-level MPKs equalize, i.e. σ2

mpk,t = 0, the allocation that maximizes the static
production of all rms in the economy. If MPK varies substantially across rms, it implies that
the economy forgoes the opportunity to increase the aggregate output by reallocating capital
from low MPK to high MPK rms. A lower MPK among rms in the cross-section implies
misallocated capital that high MPK rms could have more eciently utilized.

Finally, capital misallocation, i.e. MPK dispersion, is the cross-sectional variance of rm-
level MPK in each quarter. Furthermore, I propose changes in capital misallocation as the log
changes of capital misallocation with respect to the 4-quarter lag. I take annual log changes in
remove seasonal uctuations of sales that inuence the measure

∆σ2
mpk,t = σ2

mpk,t − σ2
mpk,t−4 (3)

[Figure 1 about here.]

Figure 1 shows the MPK distribution over time. Panel A shows that the MPK distribution
is right-skewed and the distribution becomes more heavily tailed over time. Panel B plots the
percentiles of theMPK distribution in each quarter. Superstars are rms in the further right tail
of MPK distribution, so the skewness ofMPK distribution capturesMPK of superstars. Positive
changes in the skewness of MPK indicate increases inMPK of superstars relative to other rms,
which raises the MPK spread.

To examinewhich component of misallocation is important for asset pricing andwhich sub-
set of rms drives the misallocation, I decompose the capital misallocation into contributions
by each subset of rms. In the case of two groups (superstar rms and non-superstar rms),
the aggregate MPK dispersion can be decomposed into

σ2
mpk  

Total misallocation (Misalltotal)

=
N0 − 1

N − 1
σ2
mpk,0

  
Misallocation within non-superstars (Misallrest)

+
N∗ − 1

N − 1
σ2
mpk,∗

  
Misallocation within superstars (Misalltop)

+
N0N∗

N(N − 1)
(µmpk,0 − µmpk,∗)

2

  
MPK spread

(4)

Section A0.1 in the Appendix shows the derivation. Intuitively, I decompose the capital
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misallocation into three components: the misallocation among superstars, the misallocation
among non-superstars, and the misallocation due to the (squared) dierence in themeanMPK
between the twoportfolios, referred to as "MPK spread". Finally, we candecompose the changes
in misallocation into

∆Misalltotal = ∆Misallrest +∆Misalltop +∆MPK spread (5)

[Figure 2 about here.]

Figure 2 plots the time series of the aggregate misallocation and its components. Periods of
high misallocation tend to coincide with the NBER recessions, implying the countercyclicality
of capital misallocation. Consistent with David, Schmid, and Zeke (2022), MPK dispersion
rises during economic downturns. The MPK spread, i.e. the misallocation between superstars
and non-superstars, particularly displays clear cyclical patterns.

In an ecient market, capital ows towards its most productive uses, i.e. rms with the
highest MPK would attract more investment. Intuitively, when superstar rms dominate this
capital inow, it may not always be due to their superior productivity. If these rms’ higher
MPKs result from market distortions, such as barriers to entry for competitors, then the higher
MPK reects an ineciency rather than a pure productivity advantage. This misallocation can
lead to slower economic growth by preventing capital from reaching potentially innovative but
smaller competitors.

3 Asset pricing results

Bae, Bailey, and Kang (2021) show that stock market concentration is associated with capital
misallocation as it impedes competition and innovation. As higher capital misallocation in-
dicates slower economic growth (David, Hopenhayn, and Venkateswaran, 2016; Dou, Ji, Tian,
andWang, 2023), capital misallocation could be a candidate state variable that predicts changes
in investment opportunities under the Intertemporal CAPM (ICAPM) framework.

In this section, I show the cross-sectional asset pricing results of changes in capital mis-
allocation and its components. I rst run the Fama-MacBeth regressions and then form the
factor-mimicking portfolios sorted on individual stock exposure to the changes.
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3.1 Cross-sectional analysis

In this section, I examine whether the changes in aggregate misallocation and each component
are priced in the cross-section of expected stock returns. Following the standard Fama-MacBeth
two-stage procedure, for each test portfolio i, I rst estimate the factor loadings (ik) using
time-series regressions of portfolio excess returns on the risk factor(s)

Re
it = i +



k

ikfkt + uit, (6)

where k is the number of risk factors. Second, for each time t, I estimate the price of risk for
each factor (λk,t) using cross-sectional regressions

Re
it = λ0,t +



k

λkt̂ik + i,t (7)

The risk premium for each factor k is then the time-series average of the price of risk λk =

1
T

T
t=1 λ̂kt. As a convenience to compare the magnitudes of the asset pricing results, I stan-

dardize the changes in aggregate misallocation and its components. Table 1 reports results
for the second-stage regressions. Panel A shows that results in the cross-section of 25 size ×

book-to-market and 10 momentum portfolios, the CAPM cannot explain the dierence in av-
erage returns across portfolios since the price of risk is statistically insignicant in Model (1).
The adjusted R-squared is close to zero. In contrast, whenModel (2) includes the market factor
and changes in aggregate misallocation, the changes in aggregate misallocation have a negative
price of risk, although not signicant.

[Table 1 about here.]

When the model includes changes in each component as a separate factor, Model (5), (8),
and (9) show that changes in the MPK spread carry a negative price of risk. The price of risk is
signicantly priced at the 5% level across all models. Adding this factor to the CAPM increases
the cross-section R-squared by 65%. In contrast, adding other changes does not improve the
t any further. The ndings are consistent in Panel B when the models include the Fama and
French (1992, 1993) three factors and momentum factor and the cross-section includes 25 size
× investment and 25 size× operating protability portfolios. While the signicance of the price
of risk of other decomposed changes is not robust to dierent t-ratios, the signicance of the
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price of risk of changes in the MPK spread remains consistent.
Intuitively, a positive change in the MPK spread raises the dierence in the mean MPK

between superstars and non-superstars. Superstars on average have higher MPK, while other
rms on average have lower MPK, leading to an increase in the MPK dispersion. The economy
as a result operates as a higher capital misallocation. Thus, an increase in capital misallocation
represents negative news for investors whose marginal utility depends on future consumption
growth. If the rise in the MPK spread lowers economic growth, changes in the MPK spread
carry a negative price of risk. While other components do not yield signicant results, these
results imply that the price of risk of aggregate capital misallocation is mainly driven by the
dierence in the MPK level of superstars compared with other rms in the economy.

[Figure 3 about here.]

Figure 3 plots the realized versus predicted returns from the cross-section of 25 size× book-
to-market and 10momentum portfolios. Panel E shows that adding changes in theMPK spread
to the CAPM reduces the pricing error (RMSE) to 1.59. Panel F reports the same pricing error
when the model includes other changes. These results conrm an important role of superstars
in asset pricing: The negative price of risk of capital changes in misallocation terms from the
dierence in the MPK level between the superstars and non-superstars.

The value premium, i.e. rmswith high book-to-market have on average higher expected re-
turns, is well documented in the literature. Parker and Julliard (2005) discuss that value stocks
have high average returns because they pay o poorly before and early in recessions, captured
by ultimate consumption risk. Thus, the expected excess return of value-minus-growth stocks
predicts consumption growth. Since higher capital misallocation also predicts a lower con-
sumption growth rate (Dou, Ji, Tian, andWang, 2023; David, Hopenhayn, and Venkateswaran,
2016), rms’ book-to-market and exposure to changes in misallocation must align in the sign
direction.

Based on thesemechanisms, I examine the factor loadings in the 25 portfolios formed on size
× book-to-market ratio. I test separately the exposure to the changes in aggregate misallocation
and changes in each component, controlling for the market risk. If the negative price of risk
lines up with the portfolios, mechanically rms with higher book-to-market ratios are more
negatively exposed to changes in the MPK spread. In other words, value stocks should have
lower betas for changes in the MPK spread than growth stocks.
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[Table 2 about here.]

Table 2 reports the rst-stage betas across the portfolios. In Panel A, the decreasing trend
in the beta of the changes in aggregate misallocation, when portfolios are sorted from low to
high book-to-market, reects themechanics for the negative price of risk. However, no betas are
insignicant. In Panel B, the changes in misallocation in the non-superstar portfolio show no
signicant betas. Thus, these two factors are seemingly spurious factors. In Panel C, the changes
in misallocation in the superstar portfolio, most betas are negative and large but weakly signi-
cant. Only changes in theMPK spread shown in Panel D display a clear decreasing trend across
the book-to-market portfolios within each size. Most betas (24/25) are signicant, consistent
with the hypothesis that value stocks load more negative exposure to the changes than growth
stocks.

3.2 Factor-mimicking Portfolios

Next, I create portfolios sorted on individual stock exposure to changes in capital misallocation
and each component. To estimate the rm-level exposure, for each stock, I regress the quar-
terly excess returns either on changes in aggregate misallocation or its components by a rolling
window of 20 quarters (with a minimum of 12 quarters available).

Re
it = i + it∆zt + it, t = t− 20 → t z ∈ Misalltotal,Misallrest,Misalltop,MPK spread

(8)

The stock’s exposure to the changes inmisallocation equals themisallocation-beta estimated
from these regressions. Each quarter, I sort stocks into quintiles based on their misallocation-
beta, lagging by one quarter. I hold and rebalance the portfolio every quarter.

[Table 3 about here.]

Table 3 reports the average (expected) returns and the abnormal returns (alpha) when
stocks are sorted into portfolios based on the exposure to the MPK spread. Portfolio returns
are value-weighted bymarket cap. Across the portfolios, the average excess returns decrease as
the exposure to changes in the MPK spread rises from Quintile 1 (11.6%) to Quintile 5 (6.8%).
Importantly, stocks in Quintile 1 have a negative exposure to exposure to changes in the MPK
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spread. The expected return reduces when misallocation increases, i.e. a positive change in
misallocation, making these stocks risky. Hence, they carry higher risk premia. Whereas, stocks
in Quintile 5 have a low expected return. These stocks have a positive exposure to changes in
the MPK spread. That is, their expected returns increase when misallocation rises, making
them a hedge. Thus, these stocks carry lower risk premia. The long-short portfolio (Q5–Q1)
has an average excess return of −48% per year with a t-statistic of −264, consistent with the
negative price of risk of changes in the MPK spread.

The long-short portfolio has a negative and signicant abnormal return (alpha) in all asset
pricing models - the CAPM, Fama and French (1992, 1993) three-factor, and the Fama and
French (2015) ve-factormodels. Interestingly, themarket beta is insignicant in the long-short
portfolios across all models. The Appendix shows the same set of results for the exposure to
the changes in aggregate misallocation and changes in the misallocation within each portfolio.
Yet, the results are insignicant. These results strengthen the mechanism for the negative price
of risk of the changes in the MPK spread.

Table A2 reports the results using the equally weighted returns. The average returns in
each portfolio become higher but the long-short returns remain negative at −32% per year
and signicant at the 5% level. Across the CAPM, Fama and French (1992, 1993) three-factor,
and the Fama and French (2015) ve-factor models, the alphas are signicantly negative so the
standard asset pricing models cannot explain the abnormal returns to the exposure to changes
in the MPK spread.

Table A3 reports the value-weighted average characteristic of the stocks in each quintile
portfolio. The results show that, on average, stocks negatively exposed to changes in the MPK
spread (Quintile 1) tend to be smaller (low market cap), lower market power (markup), value
rma, young (lower duration), but more innovative than stocks positively exposes to changes
(Quintile 5). Thus, non-superstar rms tend to be negatively exposed to changes in the MPK
spread. Whereas, superstar rms tend to be positively exposed to theses changes. Consistently,
non-superstar rms tend to be risky, and superstar rms tend to provide a hedge during eco-
nomic downturns against changes in the MPK spread.

[Table 4 about here.]

After sorting stocks into the portfolios, we can examine in the post-formation periodwhether
the beta of each portfolio lines up. Table 4 reports the coecients from regressing value-
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weighted/equally weighted returns of each portfolio on the changes in MPK spread and the
market factor. The post-formation portfolios show a negative beta in the lowest quintile and a
positive beta in the highest quintile. Furthermore, the intercept is insignicant, implying that
no returns remain unexplained in the portfolio. Thus, the exposure to MPK spread of the long-
short portfolio returns is consistent.

3.3 Spanning tests

Next, I study the diversication benets of each portfolio. This section tests whether the port-
folio exposed to changes in the MPK spread adds to the mean-variance eciency of other port-
folios, and vice versa. I regress the returns of the test assets on the market and the returns of
the benchmark assets. If the test assets exactly price the benchmark assets, then the intercept
alphas should equal zero. This is known as the Jensen measure. Under the null hypothesis, the
benchmark assets span the test assets. If the Jensen measure is signicantly dierent from zero,
then adding the test assets to the benchmark improves the mean-variance eciency.

[Table 5 about here.]

Table 5 shows the results. In Panel A, the benchmark assets are the returns to the long-short
portfolio exposed to the changes in aggregatemisallocation. The Jensenmeasure is signicantly
dierent from zero for the portfolio exposed to changes in the MPK spread as the test asset.
Therefore, adding the portfolio exposed to changes in the MPK spread to the portfolio exposed
to the changes in aggregate misallocation improves the mean-variance eciency.

Panel B shows the same set of results except that the benchmark assets are the returns to the
long-short portfolio exposed to changes in the MPK spread. The portfolio exposed to changes
in the MPK spread prices all benchmark portfolios. Hence, Adding the portfolio exposed to
changes in the MPK spread improves the mean-variance eciency of the portfolio exposed to
the changes in the aggregate misallocation and other portfolios.

4 Predicting economic growth

A candidate for ICAPM state variables must forecast the investment opportunities. In this sec-
tion, I examine the predictability of the MPK spread for future economic growth. Particularly,
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I use the non-standardized variables to avoid forward-looking bias and run the standard pre-
dictive regressions.

Panel A of Table 6 reports the results of the following predictive regression:

∆CGt:t+k = + zt + ϵt:t+k, z ∈ Misalltotal,Misallrest,Misalltop,MPK spread (9)

where CGt:t+k is the per capita real consumption growth (nondurable and services) in k quar-
ters. In each quarter, real consumption per capita is the total real consumption of nondurable
goods and services, divided by the total population. The predictive variables zt are the aggre-
gate misallocation, misallocation among non-superstars, misallocation among superstars, and
the MPK spread. The columns show results for k = 1, 4, 8 and 12 quarters. I calculate standard
errors based on Hodrick (1992) and based on Newey and West (1987) with k − 1 lags.

[Table 6 about here.]

From 1 to 8 quarters ahead, the MPK spread negatively predicts changes in per capita real
consumption growth. The coecient is signicant at 1% level, with an adjusted R-squared
of more than 6% across the quarters. The magnitude of the forecast is also larger at a longer
horizon. The aggregate misallocation, misallocation among non-superstars, and misallocation
among superstars on the other hand are statistically and economically insignicant.

Panel B of Table 6 reports the results of the following predictive regression:

∆IPt:t+k = + zt + ϵt:t+k (10)

where IPt:t+k is the industrial production growth in k quarters. From 4 to 12 quarters forward,
the MPK spread also predicts negative changes in industrial production growth. Other vari-
ables in contrast yield no signicant predictive results.

Panel C of Table 6 reports the results of the following predictive regression:

∆Et:t+k = + zt + ϵt:t+k (11)

where Et:t+k is the log employment growth in k quarters. The MPK spread on the other hand
predicts higher changes in employment growth. Other variables in contrast yield no signicant
predictive results.
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Consistently, changes in the MPK spread also robustly predict negative economic growth.
Table 11 reports the same set of regressions when changes in aggregate misallocation and the
MPK spread act as predictors. Changes in the MPK spread negatively predict consumption
growth, industrial growth, and employment growth. Although the changes in aggregate mis-
allocation have some predictive power in some models, the positive sign is counter-intuitive
since higher misallocation as in the literature predicts lower economic growth and hence con-
sumption growth (David, Hopenhayn, and Venkateswaran, 2016).

Intuitively, the predictability results support the mechanism that superstar rms attract
more capital disproportionally due to their market power rather than their productivity. If
the driving factor is productivity, it would be considered good news for the economy, making
it unclear why it would be associated with negative outcomes such as slower economic growth,
and declining employment. Therefore, the results suggest that the observed eects are not tied
to productive eciency but rather to the inuence of market power, which could negatively
impact these economic indicators.

Finally, I test the mechanism that the MPK spread dampens innovation activity in the short
run. I test the predictability of the MPK spread for innovation growth using the following
predictive regression:

∆It:t+k = + zt + ϵt:t+k (12)

where It:t+k is the innovation growth in k quarters.

[Table 7 about here.]

Table 7 reports the results for k = 1, 2, 3, 4, 5 and 6 quarters. I construct the innovation
proxy It as the natural logarithm of one plus the total number of patent applications divided by
the total rm market cap on the aggregate level, within superstars, and within non-superstars
portfolios. Panel A shows that theMPK spread predicts negative changes in innovation growth.
Both statistical signicance and economic signicance are large comparing to the aggregate
capital misallocation.

Panel B uses changes in innovation growth among non-superstars as the dependent vari-
able. In all quarters, the MPK spread signicantly predicts negative changes in innovation
growth among non-superstars. Both economic signicance and statistical signicance increase
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with the horizon from 1 to 5 quarters. Whereas, the coecients for aggregate misallocation
across all quarters are not signicant.

Yet, when Panel C uses changes in innovation growth among superstars as the depen-
dent variable, no coecients are statistically and economically signicant. These results im-
ply a higher discrepancy in the mean productive use of capital between superstars and non-
superstars discourages innovation activity in the economy, especially among non-superstars,
leading to lower economic growth in the long run.

This implication is consistent with Bae, Bailey, and Kang (2021) who also nd that higher
stock market concentration is associated with lower innovation activity. It is also consistent
with Kung and Schmid (2015) who show that innovation endogenously generates long-run
uctuation in economic growth. In contrast, the aggregate capital misallocation, the misallo-
cation among superstars and among non-superstars do not show predictive power and their
changes do no carry a signicantly negative price of risk. Therefore, only the MPK spread is a
good candidate state variable.

4.1 Consistency with the ICAPM

In this section, I examine whether changes in capital misallocation between superstar and non-
superstar rms as a risk factor satisfy the restrictions under the ICAPM framework. Maio and
Santa-Clara (2012) proposes three restrictions associated with the ICAPM. The rst restriction
concerns the forecasting power of state variables for investment opportunities. Specically, the
state variables must forecast the rst moment (expected returns) or second moment (market
volatility) of aggregate stock returns.

Subsequently, I examine whether aggregate capital misallocation or its component predicts
future stock market excess returns. Table 8 reports the results of the following predictive re-
gression:

Re
mkt,t:t+k = + zt + ϵt:t+k (13)

whereRe
mkt,t:t+k = Re

mkt,t+1+· · ·+Re
mkt,t+k is continuously compoundedmarket excess return,

using the CRSP value-weighted returns in excess of the US one-month Treasury Bills rate, from
the end of quarter t to the end of quarter t+ k.

I construct out-of-sample predictability following Campbell and Thompson (2008). I esti-
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mate the Equation (13) using all available returns up to quarter t with a minimum of 80 quar-
ters. Then I use the estimates ̂t and ̂t, using data from the start of the sample period to quarter
t, to forecast the k-quarter excess return from quarter t to t+ k:

R̂e
mkt,t:t+k = ̂t + ̂tzt, (14)

The out-of-sampleR-squared for the predictive regressions uses the historical average excess
market return as a benchmark as follows:

R2
OOS = 1−

T−k
t=80(Rmkt,t:t+k − R̂mkt,t:t+k)

2

T−k
t=80(Rmkt,t:t+k − kR̄mkt,1:t)2

, (15)

where R̄mkt,1:t is the average excessmarket return up to quarter t, and T represents the length of
the return series. The summation covers all quarters starting in quarter 241. The out-of-sample
R-squared can be negative if the predictive variable has poor out-of-sample predictability.

[Table 8 about here.]

As a result, the MPK spread negatively predicts the future stock market returns in all quar-
ters. The coecient is signicant at the 5% level for 1 quarter and 1% level for 4 quarters ahead.
The in-sample R-squared is approximately 1.8% for 1 and 4 quarters and 2.8% for 8 quarters.
The out-of-sample R-squared is positive and is approximately 0.2% and 0.5%. Thus, the MPK
spread satises the rst restriction for the ICAPM although the goodness of t is relatively low.

The second restriction concerns the relationship between the predictive power of the state
variable and the risk premium of the risk factor. Specically, if a state variable forecasts positive
(negative) expected returns, then the innovation or changes in the state variable as a risk factor
should earn a positive (negative) price of risk. Previous ndings show that the MPK spread
negatively predicts investment opportunities and changes in the MPK spread are negatively
priced in the cross-sectional tests. Thus, these ndings satisfy the second restriction for the
ICAPM.

Intuitively, an asset negatively exposed to innovations in a state variable also negatively
covaries with future expected returns. Such an asset provides a hedge against reinvestment
risk, as it delivers higher returns when aggregate returns are expected to be lower. Because it
oers protection during economic downturns, a risk-averse investor would be willing to hold
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this asset even if it oers a lower expected return. Therefore, a negative covariance with the
innovation of the state variable results in a negative price of risk for the factor, implying that
investors accept lower returns for the benet of hedging against future economic downturns.

The third restriction requires that the estimated market price of risk, which reects the risk-
aversion coecient of the representative investor, must be economically plausible. The ICAPM
in unconditional form with a hedging risk factor and the market has the form

E(Re
i,t+1) = m Cov(Re

i,t+1,MKTt+1) + z Cov(Re
i,t+1,∆zt+1) (16)

Intuitively, for an asset that does not provide a hedge against changes in current aggregate
wealth, as it pays in good times (periods with high returns on wealth), a risk-averse investor
would be willing to hold such an asset only if it oers a premium over the risk-free rate. Follow-
ing Maio and Santa-Clara (2012), I estimate the price of risk of each factor  using the GMM
system with N + 2 moment conditions:

gT (b) ≡
1

T

T−1

t=0




Re
i,t+1 − mRe

i,t+1(MKTt+1 − µm)

−zR
e
i,t+1(∆zt+1 − µz)

MKTt+1 − µm

∆zt+1 − µz




= 0, i = 1,    , N (17)

The rst factor in this model is the market with unconditional mean µm. The second factor
is the changes in the state variable z, where z ∈ Misalltotal,Misallrest,Misalltop,MPK spread.
To test the goodness of t, I construct the mean absolute pricing error (MAE)

MAE =
1

N

N

i=1

̂i, (18)

where ̂i, i = 1,    , N represents the pricing errors associated with the N test assets. The
second measure is the cross-sectional OLS R-squared:

R2
OLS = 1− VarN (̂i)

VarN (R̄i)
, (19)

where R̄i =
1
T

T−1
t=0 Re

i,t+1 is the average excess return for asset i. R2
OLS measures the fraction

of the cross-sectional variance in average excess returns explained by the model.

[Table 9 about here.]
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Table 9 reports the estimation of the rst-stage GMM using equally weighted errors, using
the same test portfolio as inMaio and Santa-Clara (2012). In particular, the coecient of relative
risk aversion (RRA) should fall within a reasonable range, typically between 1 and 10 (Mehra
and Prescott, 1985). In all models, the risk price of the market is signicantly positive and has
a magnitude of approximately 5. However, only Regression (4) shows a signicant negative
price of risk of the changes in the state variable, particularly the MPK spread. This result is
consistent with the results in the Fama-Macbeth regressions. Thus, these ndings satisfy the
third restriction.

In conclusion, the MPK spread predicts changes in economic growth and aggregate stock
returns. Changes in theMPK spread, exacerbating capitalmisallocation, represent badnews for
investors whose marginal utility depends on long-run consumption growth. Hence, consistent
with the ICAPM framework, theMPK spread is a state variable, and changes in theMPK spread
are a priced risk factor.

5 Robustness tests

In this section, I check the robustness of the main ndings. The main results are robust to al-
ternative denitions of superstars, additional test portfolios in the Fama-MacBeth regressions,
industry classications, value-weighted capital misallocation, types of capital, subsample pe-
riods, and annual frequency data.

5.1 Alternative definitions of superstar firms

To identify superstar rms, I adopt a widely used approach that denes them as the largest
rms based on market capitalization or sales (Bae, Bailey, and Kang, 2021; Schlingemann and
Stulz, 2022). While the number of listed rms in the U.S. stock market increased substantially
before the 2000s and has since declined, the concentration of superstar rms within the top
decile of market capitalization and sales distribution has remained relatively stable.

[Table 10 about here.]

Table 10 shows that the pricing results are robust to dening superstar rms as the 50 rms
sorted bymarket cap and sales. TheMPK spread is negatively priced, although the signicance

23



is relatively weaker. Yes, it is consistent with the main ndings as the top 50 superstar rms
sorted bymarket cap or sales are nearly identical to superstarrms identied bymarkup shares.

Themainmechanismdriving theMPK spread in this paper is themarkup of superstarrms.
Ayyagari, Demirgüç-Kunt, and Maksimovic (2024) nd that markups are positively related to
a greater probability of being a star rm. However, another potential friction contributing to
capital misallocation could be nancial constraints. To investigate this alternative, I estimate
rm-level nancial constraints using two standard proxies: the Kaplan and Zingales (1997)
index (KZ index) and the Whited and Wu (2006) index (WW index). Higher values of these
indices correspond to greater nancial constraints. Accordingly, I redene superstar rms as
the bottom 5% within their industries based on nancial constraints. Results reported in Ta-
ble A5 indicate that the price of risk of the MPK spread is not signicant under this alternative
denition, suggesting that nancial constraints do not drive my asset pricing results.

Additionally, I test the robustness of these ndings by splitting the sample into top and
bottom halves based on markup. When I randomly select 50 rms from each half and repeat
this process 500 times, the results indicate that only 4.8% of the changes in the MPK spread are
statistically signicant at the 5% level (see Table A1). This simulation supports the conclusion
that essentially superstar rms’ markup drives the MPK spread.

5.2 Predictability of risk factors

Consistently, if a state variable predicts future economic growth and stock market returns, then
changes in the state variable should also predict these variables since they carry the same in-
formation. Thus, I run the same predictive regressions using changes in the aggregate capital
misallocation and changes in MPK spread.

[Table 11 about here.]

Panel A of Table 11 reports the results of predicting per capita real consumption growth
(nondurable and services) in k quarters. The predictive variables zt are changes in the aggre-
gate misallocation and the MPK spread. The columns show results for k = 1, 4, 8, 12 and 20

quarters. In all quarters forward, higher changes in the MPK spread predict lower changes in
per capita real consumption growth. The coecient is the most signicant at 8 and 12 quar-
ters forward, with an adjusted R-squared of 6-7% in Regression (6) and (8). The changes in
aggregate misallocation on the other hand have a statistically signicant power in 4, 8, and 12
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quarters but the economic signicance is almost close to zero and has a counter-intuitive sign
since higher misallocation as in the literature predicts lower economic growth hence consump-
tion growth (David, Hopenhayn, and Venkateswaran, 2016).

Panel B reports the results of predicting industrial production growth. In 8,12, and 20 quar-
ters forward, higher changes in the MPK spread also predict lower changes in industrial pro-
duction growth. Panel C reports the results of predicting employment growth. Although the
changes in aggregate misallocation have predictive power in 8 and 12 quarters ahead, the sign
is not economically intuitive. Changes in the MPK spread on the other hand predict negative
changes in employment growth.

Finally, Panel D reports the results of predicting stock market excess returns. Changes in
the MPK spread negatively predict the future stock market returns in 4 and 12 quarters. The
coecient is signicant at the 5% level for 4 quarters and 1% level for 20 quarters. The in-sample
R-squared is approximately 4.1% for 4 quarters and 2.0% for 20 quarters. The out-of-sample R-
squared is positive and is approximately 0.7% and 1.6%.

5.3 Additional test portfolios

This section shows the robustness of the main results by using a dierent set of test portfolios.
Table 12 reports the pricing results in the cross-section of 202 portfolios used in Giglio and
Xiu (2021): 25 portfolios sorted by size and book-to-market ratio, 17 industry portfolios, 25
portfolios sorted by operating protability and investment, 25 portfolios sorted by size and
variance, 35 portfolios sorted by size and net issuance, 25 portfolios sorted by size and accruals,
25 portfolios sorted by size and beta, and 25 portfolios sorted by size and momentum.

[Table 12 about here.]

Table 12 reports results. The price of risks of the changes in aggregate misallocation loses
signicancewhen included in the CAPMand Fama and French (1992, 1993) three-factormodel.
Yet, in all models, only the changes in the MPK spread display a negative price of risk, with a
statistical signicance of less than 1%. Although all intercepts are signicant, changes in aggre-
gate misallocation and its components as macroeconomic risk factors are non-return based and
nontradable, so we cannot emphasize the signicance of the intercepts unless they are implied
from a theoretical model.
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5.4 Industry classification

First, to examinewhether themain results are driven byrms in leading industries, I re-estimate
the pricing model after excluding technology rms, identied by the two-digit SIC code "73".
The results, reported in Table A6, indicate that theMPK spread remains signicantly negatively
priced in all models. These ndings conrm that superstar rms are not necessarily concen-
trated in leading industries such as technology. Thus, the eects documented in the paper are
not driven solely by the dominance of rms in these industries.

Second, in Table A7, I assess the robustness of the main results using the 300-industry clas-
sication from Hoberg and Phillips (2016), which provides a more granular delineation of in-
dustry boundaries based on productmarket similarities. The results show that theMPK spread
remains signicantly negatively priced, consistent with the main ndings. This suggests that
the main conclusions are not sensitive to the choice of industry classication.

5.5 Value-weighted capital misallocation

The Appendix derives the general formula for the subsample decomposition of the value-
weighted variance. The value-weighted capital misallocation has the form

σ2
mpk,w =

N

N − 1

K

k=1

Nk − 1

Nk
Ωkσ

2
mpk,w,k

  
Within-group misallocation

+
N

N − 1

K

k=1

Ωk(µmpk,w,k − µmpk,w)
2

  
Between-group misallocation

(20)

where Ωk =


i∈k wi is the total weight for each portfolio, and wi is the weight of each stock. I
normalize the weights so that K

k=1Ωk = 1. Furthermore, µmpk,w =
N

i=1wimpki is the value-
weighted mean MPK in the whole sample, and µmpk,w,k =


i∈k

wi
Ωk

mpki is the value-weighted
mean MPK in each portfolio.

In the case when k = 2, the value-weighted capital misallocation has the form

σ2
mpk,w =

N

N − 1

N0 − 1

N0
Ω0σ

2
mpk,w,0

  
Misallocation among non-superstars

+
N

N − 1

N∗ − 1

N∗
Ω∗σ2

mpk,w,∗
  
Misallocation among superstars

+
N

N − 1


Ω0(µmpk,w,0 − µmpk,w)

2 + Ω∗(µmpk,w,∗ − µmpk,w)
2


  
MPK spread

(21)

Table 13 reports results using Giglio and Xiu (2021)’s 202 test portfolios. When the model
includes the market, changes in the aggregate capital misallocation are signicantly and neg-
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atively priced. However, the signicance vanishes when the model includes the Fama and
French (1992, 1993) three factors and momentum factor. Consistently with the main nding,
changes in theMPK spread carry a negative price of risk. Thus, the pricing power of changes in
misallocation between superstar rms and other rms is robust to the cross-sectional measure
for aggregate capital misallocation.

[Table 13 about here.]

5.6 Tangible capital versus intangible capital

With a rising trend of intangible capital among superstars, in this section, I inspect whether any
specic type of capital could drive capital misallocation and may aect the main results. In the
same cross-section with Table 1, when I estimate the changes in aggregate misallocation and its
components using physical capital, the magnitude of the price of risk inates, but the statistical
signicance remains weak. When the changes in misallocation only consider intangible capital,
then the price of risk is no longer priced, but the negative size reserves. Importantly, in both
types of capital, the price of risk of changes in the MPK spread remains negative and strongly
signicant. These results imply that the dispersion in the mean tangible and intangible MPK
between superstars and non-superstars is equally important. Thus, no particular type of capital
drives the main ndings.

[Table 14 about here.]

5.7 Pre-2000s and post-2000s subsamples

Two trends that may aect superstars dierently between these two periods are (1) the com-
position of superstars and (2) the decline in number of listed rms. Before the 2000s, superstar
rms are mainly rms in the manufacturing industries with high tangible capital. After the
2000s, many superstar rms are in the tech and service industry with high intangible capital
(Schlingemann and Stulz, 2022). Thus, there is an increasing market concentration towards
rms in riskier industries in the later subsample.

On themarket-wide, the number of listedrms has declined after the 2000s (Doidge, Karolyi,
and Stulz, 2017). This trend may also aect the markup of superstars in the public market so I
inspect the pricing power of changes in capital misallocation in each subsample.
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[Table 15 about here.]

In general, the long-short portfolio yields a negative expected return and the decreasing
trend in expected returns across the beta-sorted portfolios remains across the subsamples. One
interesting result is that before the 2000s when superstars were mainly in the manufacturing
industries, the signicance of the results was weak. Furthermore, the economic magnitude is
also lower, compared to the expected returns in the post-2000s subsample. These results cast
on the rising importance of superstars in driving the price of risk of changes in misallocation.

5.8 Annual frequency

The main results in the paper use the quarterly frequency. Table A9 reports replication of the
sample using the annual frequency. There is a stronger pricing power for the price of risk of
the changes in aggregate misallocation. The pricing of changes in the MPK spread is robust to
the annual frequency. Interestingly, the Fama-French model could explain 52% of the variation
in the portfolio returns, indicated by the adjusted R-squared. When including changes in the
MPK spread, the adjusted R-squared improves to 63.7%. Table A8 in the Appendix shows the
same set of results for annual frequency, using intangible capital from Peters and Taylor (2017)
instead of the estimated method from Eisfeldt and Papanikolaou (2013). These results also
conrm the robustness of our main ndings that the MPK spread drives the price of risk of
capital misallocation, implying that superstars inuence asset prices via the channel of capital
misallocation.
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6 Conclusion

This paper shows the asset pricing consequence of superstar rms. Specically, I propose a
new state variable in the ICAPM framework: capital misallocation between superstar and non-
superstar rms. Using a measure of cross-sectional MPK dispersion, I decompose capital mis-
allocation into three components: the misallocation within the superstar portfolio, the misallo-
cation within the non-superstar portfolio, and the MPK spread. The MPK spread captures the
dispersion in mean MPKs across the two portfolios.

In the cross-section of stock returns, I nd that changes in the MPK spread are signi-
cantly and negatively priced. Stocks with negative exposure to the changes in this component
carry higher risk premia, while stocks with positive exposure carry lower risk premia. Be-
sides, adding the MPK spread-mimicking portfolio also improves the mean-variance eciency
of other portfolios. In the time series, the MPK spread negatively predicts long-run consump-
tion growth, industrial production growth, employment growth, and future stock market re-
turns. Whereas, in the short run, the MPK spread predicts lower aggregate innovation growth
and innovation growth among non-superstars.

These ndings are economically intuitive. In an ecient market, capital ows towards its
most productive uses. Yet, if superstar rms’ MPKs are driven by market distortions, such
as market power that raises barriers to competitor entry, the higher MPK reects an ine-
ciency rather than a pure productivity advantage. Such misallocation can dampen economic
growth by restricting capital access to smaller, potentially innovative competitors. Therefore,
capital misallocation between superstar and non-superstar rms emerges as a state variable,
with changes in this misallocation capturing a priced risk factor.

While the literature highlights the rise of superstars and the rise in capital misallocation,
this paper highlights the role of superstars in shaping the price of risk associated with capi-
tal misallocation. One direction for future work is to model and test the innovation channel
through which superstar rms deter innovation growth of other rms, resulting in the pric-
ing power and predictability power of changes in misallocation between superstar and non-
superstar rms.
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Figure 1: MPK distribution over time
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Description. This gure plots MPK distribution across all rms in each year. Panel A plots the distribution density
in 1990, 2010, and 2020. Panel B plots dierentmoments of the distribution of averageMPK from 1975:Q1 to 2023:Q4,
compared to the averageMPK of superstars. Firm-level MPK is the output-to-capital ratio. I use sales as output and
net property, plant, and equipment (ppentq) as physical capital plus intangible capital estimated from Eisfeldt and
Papanikolaou (2013).
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Figure 2: Capital misallocation against NBER recessions
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Description. This gure plots the aggregate misallocation, misallocation to non-superstars, misallocation to super-
stars, and the MPK spread. The sample is from 1975:Q1 to 2023:Q4. In each quarter, capital misallocation σ2

mpk,t is
the cross-sectional dispersion of MPK across rms. The aggregate misallocation is be decomposed into:
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Figure 3: Realized versus predicted mean returns
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Description. This gure shows the cross-sectional asset pricing tests from the CAPM. Test portfolios include 25 size
× book-to-market portfolios and 10 momentum portfolios. Each panel plots the realized mean excess returns of the
portfolios against the mean excess returns predicted by the CAPMwith the changes in aggregate misallocation and
its components. The sample runs from 1975:Q1 to 2023:Q4. Returns are in percent per year.
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Table 1: Cross-sectional asset pricing tests

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Panel A: Pricing 25 size×book-to-market and 10 momentum portfolios
Constant 12.090 10.792 10.895 11.405 14.109 13.051 12.544 14.467 13.972

(3.67)∗∗∗ (3.25)∗∗∗ (3.28)∗∗∗ (3.47)∗∗∗ (4.26)∗∗∗ (4.15)∗∗∗ (4.01)∗∗∗ (4.42)∗∗∗ (4.43)∗∗∗
[3.67]∗∗∗ [2.99]∗∗∗ [3.05]∗∗∗ [3.14]∗∗∗ [2.52]∗∗ [2.90]∗∗∗ [3.07]∗∗∗ [2.62]∗∗∗ [2.56]∗∗

MKT -0.257 -0.057 -0.056 -0.318 -1.191 -0.771 -0.608 -1.253 -1.094
(-0.25) (-0.05) (-0.05) (-0.31) (-1.17) (-0.78) (-0.62) (-1.23) (-1.10)
[-0.22] [-0.04] [-0.04] [-0.25] [-0.65] [-0.50] [-0.43] [-0.69] [-0.60]

∆Misalltotal -0.435 0.501 0.342 0.374
(-0.99) (1.36) (0.97) (0.89)
[-0.90] [0.94] [0.73] [0.52]

∆Misallrest -0.410 0.590 -0.034
(-0.87) (1.56) (-0.10)
[-0.80] [1.08] [-0.06]

∆Misalltop -0.353 -0.494 0.205
(-1.40) (-1.99)∗∗ (0.91)
[-1.25] [-1.50] [0.52]

∆MPK spread -1.077 -1.066 -1.036
(-3.54)∗∗∗ (-3.88)∗∗∗ (-3.71)∗∗∗
[-2.09]∗∗ [-2.29]∗∗ [-2.13]∗∗

R2 0.012 0.064 0.050 0.131 0.668 0.200 0.148 0.669 0.688
Adj. R2 -0.018 0.006 -0.009 0.077 0.647 0.122 0.066 0.637 0.646
RMSE 2.701 2.669 2.689 2.572 1.590 2.508 2.588 1.613 1.592
Fama-Macbeth t-statistics in parentheses
Shanken t-statistics in square brackets
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Description. This table reports the prices of risk with Fama and MacBeth (1973) and Shanken t-statistics for the
25 size × book-to-market, 10 momentum, 25 size×investment, and 25 size×operating protability portfolios. The
sample runs from 1975:Q1 to 2023:Q4. Returns and risk premia are reported in percent per year (quarterly percent-
ages multiplied by four).
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Table 1: Cross-sectional asset pricing tests - continued

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Panel B: Pricing 25 size×book-to-market, 25 size×investment, 25 size×operating profitability portfolios
Constant 8.642 8.574 8.539 9.785 9.186 9.676 9.904 8.998 10.594

(2.82)∗∗∗ (2.88)∗∗∗ (2.86)∗∗∗ (3.17)∗∗∗ (3.01)∗∗∗ (3.13)∗∗∗ (3.19)∗∗∗ (3.02)∗∗∗ (3.38)∗∗∗
[2.45]∗∗ [2.51]∗∗ [2.50]∗∗ [2.64]∗∗∗ [2.44]∗∗ [2.51]∗∗ [2.49]∗∗ [2.44]∗∗ [2.42]∗∗

MKT 0.166 0.183 0.192 -0.120 0.014 -0.090 -0.149 0.059 -0.344
(0.17) (0.19) (0.20) (-0.12) (0.01) (-0.09) (-0.15) (0.06) (-0.35)
[0.13] [0.14] [0.15] [-0.09] [0.01] [-0.07] [-0.11] [0.04] [-0.23]

SMB 0.668 0.667 0.667 0.722 0.661 0.739 0.749 0.657 0.747
(1.75)∗ (1.74)∗ (1.74)∗ (1.90)∗ (1.73)∗ (1.95)∗ (1.98)∗∗ (1.71)∗ (1.97)∗∗
[1.16] [1.16] [1.16] [1.22] [1.10] [1.23] [1.23] [1.09] [1.16]

HML 1.054 1.051 1.049 1.064 0.958 1.053 1.037 0.936 0.897
(2.23)∗∗ (2.23)∗∗ (2.22)∗∗ (2.25)∗∗ (2.04)∗∗ (2.23)∗∗ (2.20)∗∗ (1.99)∗∗ (1.91)∗
[1.49] [1.49] [1.48] [1.46] [1.30] [1.42] [1.37] [1.27] [1.13]

UMD 3.057 3.006 2.964 2.940 3.390 2.395 2.335 3.239 2.522
(2.90)∗∗∗ (3.02)∗∗∗ (2.98)∗∗∗ (2.75)∗∗∗ (3.18)∗∗∗ (2.35)∗∗ (2.30)∗∗ (3.20)∗∗∗ (2.47)∗∗
[2.30]∗∗ [2.38]∗∗ [2.35]∗∗ [2.11]∗∗ [2.39]∗∗ [1.73]∗ [1.66]∗ [2.38]∗∗ [1.65]

∆Misalltotal -0.051 -0.157 -0.174 -0.055
(-0.32) (-0.96) (-1.05) (-0.34)
[-0.26] [-0.72] [-0.78] [-0.26]

∆Misallrest -0.069 -0.216 -0.261
(-0.42) (-1.25) (-1.48)
[-0.34] [-0.95] [-1.01]

∆Misalltop 0.260 0.405 0.423
(1.48) (2.05)∗∗ (2.12)∗∗
[1.19] [1.57] [1.49]

∆MPK spread -0.443 -0.462 -0.426
(-2.89)∗∗∗ (-3.03)∗∗∗ (-2.85)∗∗∗
[-2.21]∗∗ [-2.31]∗∗ [-1.94]∗

R2 0.719 0.720 0.720 0.737 0.738 0.744 0.751 0.740 0.780
Adj. R2 0.703 0.699 0.700 0.718 0.718 0.722 0.729 0.717 0.757
RMSE 1.273 1.281 1.280 1.242 1.240 1.232 1.216 1.242 1.152
Fama-Macbeth t-statistics in parentheses
Shanken t-statistics in square brackets
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 2: Exposure in the 25 size × book-to-market portfolios

Panel A: Loading on ∆Misalltotal
 t()

Low 2 3 4 High Low 2 3 4 High
Small -0.220 -0.335 -0.666 -3.174 -5.842 -0.041 -0.076 -0.145 -0.652 -0.985
2 -0.647 -1.099 -3.184 -2.498 -2.959 -0.134 -0.250 -0.719 -0.534 -0.529
3 1.237 -0.140 -1.845 -2.488 -3.073 0.269 -0.035 -0.467 -0.537 -0.567
4 0.273 -2.662 -2.317 -3.399 -5.468 0.073 -0.735 -0.613 -0.715 -1.114
Big 0.507 -2.237 -3.021 -3.660 -3.272 0.174 -0.825 -1.021 -1.003 -0.694
Panel B: Loading on ∆Misallrest

 t()

Low 2 3 4 High Low 2 3 4 High
Small 0.971 0.678 0.418 -2.144 -4.515 0.177 0.153 0.091 -0.444 -0.771
2 0.411 -0.240 -2.320 -1.524 -1.853 0.084 -0.055 -0.527 -0.329 -0.337
3 1.929 0.641 -0.960 -1.506 -2.159 0.417 0.163 -0.244 -0.329 -0.406
4 0.848 -1.959 -1.527 -2.358 -4.421 0.222 -0.539 -0.406 -0.503 -0.908
Big 0.954 -1.578 -2.483 -2.914 -2.423 0.325 -0.575 -0.840 -0.804 -0.518
Panel C: Loading on ∆Misalltop

 t()

Low 2 3 4 High Low 2 3 4 High
Small -7.608 -6.667∗ -7.897∗∗ -7.387∗∗ -8.365∗ -1.599 -1.673 -2.153 -1.961 -1.845
2 -6.447 -6.946∗ -7.139∗∗ -6.877∗ -7.681∗ -1.538 -1.916 -1.967 -1.882 -1.850
3 -5.878 -6.773∗∗ -5.761∗ -6.445∗ -7.388∗ -1.447 -2.012 -1.724 -1.787 -1.795
4 -5.252 -4.536 -4.652 -6.766∗∗ -6.383∗ -1.519 -1.428 -1.474 -1.979 -1.774
Big -4.117 -3.042 -1.537 -2.283 -5.030 -1.594 -1.317 -0.590 -0.861 -1.336
Panel D: Loading on ∆MPK spread

 t()

Low 2 3 4 High Low 2 3 4 High
Small -12.973∗∗ -11.059∗∗ -11.839∗∗ -12.092∗∗ -16.284∗∗ -2.539 -2.449 -2.560 -2.338 -2.333
2 -11.703∗∗ -9.488∗∗ -10.191∗∗ -11.290∗∗ -12.863∗∗ -2.442 -2.368 -2.358 -2.423 -2.070
3 -6.934∗ -8.291∗∗ -10.171∗∗∗ -11.427∗∗ -10.713∗ -1.739 -2.274 -2.700 -2.542 -1.718
4 -5.955 -8.478∗∗ -9.350∗∗ -12.357∗∗∗ -13.146∗∗ -1.544 -2.453 -2.541 -2.717 -2.507
Big -4.536∗ -7.993∗∗∗ -7.024∗∗ -9.558∗∗ -10.299∗∗ -1.649 -2.811 -2.346 -2.412 -2.156

Description. This table reports the factor loadings on changes in aggregate misallocation and its components for
each of the 25 size × book-to-market portfolios, i.e. the betas from the rst stage of Fama-MacBeth regressions.
Particularly, for each test portfolio i, I estimate the factor loadings using time-series regression of the excess returns
against the risk factor(s): Re

it = ci +


k βikfkt + uit. The sample runs from 1975:Q1 to 2023:Q4.
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Table 3: Exposure to changes in the MPK spread (value-weighted results)

Q1 (low) Q2 Q3 Q4 Q5 (high) Q5–Q1
Panel A: Expected return
Re 11.633∗∗∗ 5.243∗∗∗ 3.707∗∗∗ 2.062∗∗∗ 6.816∗∗∗ -4.818∗∗∗

(6.52) (5.95) (5.87) (4.88) (5.45) (-2.64)
Panel B: CAPM
MKT 1.220∗∗∗ 0.983∗∗∗ 0.915∗∗∗ 0.988∗∗∗ 1.182∗∗∗ -0.038

(23.05) (46.49) (38.53) (39.35) (28.79) (-0.63)
CAPM 0.594 0.843 1.258∗ -1.617∗∗ -3.213∗∗ -3.807∗∗

(0.41) (1.16) (1.79) (-2.08) (-2.57) (-2.12)
Panel C: FF3 + UMD
MKT 1.149∗∗∗ 0.980∗∗∗ 0.927∗∗∗ 0.997∗∗∗ 1.094∗∗∗ -0.055

(20.50) (36.01) (34.89) (34.31) (24.06) (-0.82)
SMB 0.174∗∗ -0.033 -0.083∗∗ -0.045 0.205∗∗∗ 0.031

(2.25) (-0.73) (-2.03) (-0.89) (2.76) (0.32)
HML -0.191∗∗ -0.016 0.002 -0.047 -0.181∗∗∗ 0.010

(-2.46) (-0.46) (0.06) (-1.25) (-3.87) (0.11)
UMD 0.005 -0.038 -0.043 0.034 -0.052 -0.056

(0.09) (-1.27) (-1.48) (1.09) (-0.91) (-0.87)
FF3+UMD 1.329 1.253 1.647∗∗ -1.673∗∗ -2.056 -3.384∗

(0.83) (1.51) (2.27) (-2.09) (-1.59) (-1.68)
Panel D: FF5
MKT 1.131∗∗∗ 0.997∗∗∗ 0.961∗∗∗ 1.019∗∗∗ 1.086∗∗∗ -0.045

(21.48) (35.80) (38.03) (37.63) (23.46) (-0.66)
SMB 0.132∗ -0.022 -0.045 -0.029 0.191∗∗ 0.059

(1.82) (-0.49) (-1.09) (-0.60) (2.53) (0.62)
HML -0.231∗∗ -0.066 -0.064 -0.166∗∗∗ -0.139∗ 0.093

(-2.48) (-1.50) (-1.55) (-4.02) (-1.84) (0.81)
RMW -1.044∗∗ 0.003 0.618∗∗∗ 0.466∗∗ -0.605∗∗ 0.439

(-2.50) (0.02) (3.54) (2.19) (-2.11) (0.84)
CMA 0.589 0.513∗ 0.506∗ 0.821∗∗∗ -0.097 -0.686

(1.17) (1.71) (1.97) (3.35) (-0.19) (-1.07)
FF5 2.419 0.569 0.103 -2.455∗∗∗ -1.694 -4.113∗∗

(1.64) (0.71) (0.15) (-3.14) (-1.38) (-2.06)
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Description. This table reports value-weighted average excess returns and alphas in annual percentage for portfo-
lios sorted on exposure to changes in the MPK spread. For each stock, I regress the quarterly excess returns either
on changes in misallocation or each component by a rolling window of 20 quarters (with a minimum of 12 quarters
available). Each quarter, I sort stocks into quintiles based on their misallocation-beta, lagging by one quarter. I hold
and rebalance the portfolio every quarter. The sample runs from 1975:Q1 to 2023:Q4.
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Table 4: Post-formation portfolio exposure

Q1 (low) Q2 Q3 Q4 Q5 (high) Q5–Q1
Panel A: Value-weighted portfolios
MKT 5.124∗∗∗ 4.116∗∗∗ 3.454∗∗∗ 3.817∗∗∗ 4.549∗∗∗ -0.575∗∗

(24.58) (43.55) (37.05) (40.69) (27.94) (-2.51)
∆MPK spread -2.665∗∗ 0.252 -0.780 0.592 0.827 3.493∗∗

(-2.19) (0.35) (-1.16) (0.92) (0.77) (2.23)
 -0.078 -0.186 0.327 0.765 -0.471 -0.394

(-0.05) (-0.27) (0.50) (1.00) (-0.42) (-0.20)
Panel B: Equally weighted portfolios
MKT 5.843∗∗∗ 4.553∗∗∗ 4.444∗∗∗ 4.545∗∗∗ 5.243∗∗∗ -0.599∗∗∗

(20.62) (21.93) (22.25) (19.91) (18.32) (-3.51)
∆MPK spread -5.307∗∗∗ -1.915 -1.764 -1.301 -2.804 2.503∗∗

(-2.74) (-1.43) (-1.44) (-1.04) (-1.54) (2.16)
 3.412 3.387∗∗ 2.906∗∗ 3.606∗∗ 3.313∗ -0.099

(1.59) (2.15) (2.13) (2.41) (1.69) (-0.07)
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Description. This table reports the betas from the regression of portfolio returns, whose portfolios are sorted on
the stock exposure to changes in the MPK spread, against the market and changes in the MPK spread. The sample
runs from 1975:Q1 to 2023:Q4.
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Table 5: Portfolio spanning tests

Panel A: Benchmark = Long-short returns to ∆Misalltotal-mimicking portfolios
Test portfolio = Returns to ∆Misallrest ∆Misalltop ∆MPK spread
Jensen alpha -0.003 0.004 -0.044∗∗

(-0.49) (0.37) (-2.45)

Panel B: Benchmark = Long-short returns to ∆MPK spread-mimicking portfolios
Test portfolio = Returns to ∆Misallrest ∆Misalltop ∆Misalltotal
Jensen alpha -0.001 0.004 0.005

(-0.03) (0.39) (0.23)
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Description. This table reports the spanning test alphas and the corresponding t-statistics. Panel A shows the time-
series regressions of the returns to the changes in aggregate misallocation on returns to each component. Panel B
shows the regressions of the returns to changes in the MPK spread on the returns to changes in misallocation in
superstars, non-superstars, and all rms. The sample runs from 1975:Q1 to 2023:Q4.
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Table 6: Predicting proxies for economic growth

Misalltotal Misallrest Misalltop MPK spread
̂ R2 RMSE ̂ R2 RMSE ̂ R2 RMSE ̂ R2 RMSE

Panel A: Per capita real consumption growth
k = 1 -0.091 0.006 1.008 -0.086 0.005 1.008 -0.697 0.057 0.982 -0.271 0.039 0.991

(-0.59) (-0.56) (-1.13) (-3.39)∗∗∗
[-0.59] [-0.56] [-1.12] [-3.38]∗∗∗

k = 4 0.067 0.001 1.855 0.080 0.001 1.855 -0.550 0.010 1.847 -0.750 0.089 1.772
(0.36) (0.41) (-1.16) (-3.24)∗∗∗
[0.32] [0.37] [-1.10] [-3.00]∗∗∗

k = 8 0.035 0.000 2.508 0.053 0.000 2.508 -1.077 0.022 2.480 -0.756 0.050 2.444
(0.09) (0.13) (-0.99) (-2.59)∗∗∗
[0.08] [0.12] [-0.96] [-2.64]∗∗∗

k = 12 -0.166 0.002 3.058 -0.151 0.002 3.058 -1.832 0.043 2.995 -0.333 0.007 3.051
(-0.32) (-0.28) (-1.14) (-0.87)
[-0.32] [-0.28] [-1.13] [-0.88]

Panel B: Industrial production growth
k = 1 -0.278 0.020 1.753 -0.272 0.017 1.755 -1.458 0.081 1.697 -0.282 0.014 1.759

(-1.20) (-1.17) (-1.73)∗ (-1.57)
[-1.20] [-1.16] [-1.72]∗ [-1.56]

k = 4 -0.524 0.012 4.288 -0.522 0.011 4.290 -1.964 0.025 4.260 -1.176 0.040 4.225
(-1.03) (-0.99) (-1.39) (-2.19)∗∗
[-0.93] [-0.89] [-1.29] [-2.13]∗∗

k = 8 -0.914 0.017 6.345 -0.923 0.016 6.348 -2.350 0.016 6.347 -2.423 0.079 6.139
(-0.72) (-0.70) (-0.93) (-3.38)∗∗∗
[-0.69] [-0.67] [-0.91] [-3.34]∗∗∗

k = 12 -1.363 0.026 7.559 -1.402 0.026 7.561 -2.054 0.009 7.628 -1.662 0.027 7.558
(-0.78) (-0.78) (-0.67) (-1.70)∗
[-0.77] [-0.76] [-0.67] [-1.71]∗

Panel C: Employment growth
k = 1 -0.093 0.007 0.994 -0.089 0.006 0.995 -0.585 0.041 0.977 -0.153 0.013 0.991

(-0.64) (-0.62) (-1.01) (-2.30)∗∗
[-0.64] [-0.62] [-1.00] [-2.28]∗∗

k = 4 0.148 0.007 1.538 0.163 0.008 1.537 -0.429 0.009 1.537 -0.497 0.056 1.500
(1.04) (1.10) (-1.01) (-2.49)∗∗
[0.94] [1.00] [-0.94] [-2.38]∗∗

k = 8 0.294 0.016 2.114 0.317 0.017 2.112 -0.501 0.007 2.123 -0.887 0.096 2.026
(0.83) (0.87) (-0.58) (-4.04)∗∗∗
[0.80] [0.83] [-0.56] [-3.98]∗∗∗

k = 12 0.260 0.009 2.459 0.282 0.010 2.458 -0.560 0.006 2.463 -0.585 0.032 2.431
(0.54) (0.56) (-0.50) (-2.24)∗∗
[0.53] [0.55] [-0.49] [-2.28]∗∗

t-ratio of Hodrick (1992) with k-1 lags in parentheses. t-ratio of Newey-West (1987) with k-1 lags in square brackets.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Description. This table reports the results of the following predictive regression: Qt:t+k = α+ βzt + ϵt:t+k, where
Q ∈ {CG, IP,E}. The macroeconomic data to construct this measure are obtained from the Bureau of Economic
Analysis. The predictive variables zt are aggregate misallocation, misallocation among non-superstars, misalloca-
tion among superstars, and the MPK spread. The sample runs from 1975:Q1 to 2022:Q4.
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Table 7: Predicting innovation growth

Misalltotal Misallrest Misalltop MPK spread
̂ R2 RMSE ̂ R2 RMSE ̂ R2 RMSE ̂ R2 RMSE

Panel A: Aggregate innovation growth
k = 1 -0.001 0.000 0.025 -0.002 0.000 0.025 0.488 0.005 0.025 -6.516 0.013 0.025

(-0.06) (-0.08) (0.90) (-2.23)∗∗
[-0.06] [-0.08] [0.89] [-2.22]∗∗

k = 2 0.007 0.001 0.033 0.006 0.000 0.033 0.868 0.009 0.032 -7.089 0.009 0.032
(0.22) (0.19) (1.14) (-1.91)∗
[0.20] [0.17] [1.01] [-1.77]∗

k = 3 0.019 0.004 0.036 0.018 0.003 0.036 1.210 0.015 0.036 -12.314 0.023 0.036
(0.50) (0.48) (1.25) (-2.46)∗∗
[0.47] [0.45] [1.17] [-2.37]∗∗

k = 4 0.037 0.014 0.036 0.036 0.013 0.036 1.653 0.028 0.036 -10.875 0.018 0.036
(0.82) (0.80) (1.38) (-2.27)∗∗
[0.79] [0.77] [1.32] [-2.19]∗∗

k = 5 0.047 0.020 0.038 0.046 0.019 0.038 2.133 0.041 0.037 -8.159 0.009 0.038
(0.91) (0.88) (1.41) (-1.10)
[0.87] [0.85] [1.36] [-1.09]

k = 6 0.065 0.035 0.040 0.064 0.033 0.040 2.850 0.066 0.039 -4.687 0.003 0.040
(1.11) (1.08) (1.58) (-0.48)
[1.09] [1.06] [1.55] [-0.48]

Panel B: Innovation growth of non-superstar firms
k = 1 -0.002 0.000 0.030 -0.003 0.000 0.030 0.538 0.004 0.030 -9.215 0.019 0.029

(-0.08) (-0.11) (0.82) (-2.50)∗∗
[-0.08] [-0.11] [0.82] [-2.49]∗∗

k = 2 0.009 0.001 0.038 0.009 0.001 0.038 0.772 0.005 0.038 -10.281 0.015 0.038
(0.28) (0.25) (0.91) (-2.37)∗∗
[0.25] [0.23] [0.81] [-2.20]∗∗

k = 3 0.025 0.005 0.042 0.025 0.004 0.042 0.901 0.006 0.042 -18.665 0.039 0.041
(0.63) (0.61) (0.82) (-3.18)∗∗∗
[0.60] [0.58] [0.78] [-3.09]∗∗∗

k = 4 0.045 0.014 0.043 0.044 0.013 0.043 1.313 0.012 0.043 -15.838 0.026 0.043
(0.94) (0.93) (0.97) (-2.92)∗∗∗
[0.91] [0.89] [0.93] [-2.83]∗∗∗

k = 5 0.055 0.019 0.045 0.054 0.018 0.045 1.790 0.020 0.045 -14.617 0.020 0.045
(0.99) (0.97) (1.06) (-1.68)∗
[0.95] [0.93] [1.03] [-1.68]∗

k = 6 0.075 0.032 0.047 0.075 0.031 0.047 2.400 0.032 0.047 -10.575 0.010 0.048
(1.20) (1.18) (1.19) (-0.95)
[1.17] [1.16] [1.17] [-0.95]

Panel C: Innovation growth of superstar firms
k = 1 0.004 0.000 0.026 0.005 0.000 0.026 0.283 0.002 0.026 0.767 0.000 0.026

(0.16) (0.20) (0.41) (0.25)
[0.15] [0.19] [0.41] [0.25]

k = 2 0.011 0.001 0.038 0.011 0.001 0.038 1.315 0.018 0.036 0.005 0.000 0.038
(0.28) (0.29) (1.11) (0.00)
[0.24] [0.24] [0.95] [0.00]

k = 3 0.022 0.004 0.041 0.019 0.003 0.041 2.201 0.037 0.041 1.727 0.000 0.041
(0.39) (0.32) (1.31) (0.31)
[0.35] [0.29] [1.19] [0.30]

k = 4 0.040 0.010 0.044 0.038 0.009 0.044 2.762 0.050 0.044 -2.111 0.000 0.044
(0.55) (0.51) (1.32) (-0.34)
[0.52] [0.48] [1.22] [-0.34]

k = 5 0.058 0.018 0.049 0.056 0.016 0.049 2.745 0.040 0.049 2.893 0.001 0.050
(0.68) (0.63) (1.13) (0.42)
[0.66] [0.61] [1.09] [0.41]

k = 6 0.075 0.026 0.053 0.074 0.025 0.053 3.290 0.051 0.051 6.101 0.003 0.053
(0.80) (0.75) (1.23) (0.70)
[0.79] [0.74] [1.21] [0.67]

t-ratio of Hodrick (1992) with k−1 lags in parentheses. t-ratio of Newey–West (1987) with k−1 lags in square brackets.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Description. This table reports the results of the following predictive regression:

Rt:t+k = α+ βzt + ϵt:t+k,

where It:t+k is the innovation growth in k quarters. The predictive variables zt are the aggregate misallocation and
the MPK spread. The predictive variables zt are the aggregate misallocation and the MPK spread. The columns
show results for k = 1, 2, 3, 4 and 5 quarters. I construct the innovation proxy It as the natural logarithm of one
plus the number of patent applications divided by the rm market cap. The number of patent is from Kogan,
Papanikolaou, Seru, and Stoman (2017). The sample runs from 1975:Q1 to 2022:Q4.
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Table 8: Predicting aggregate stock returns

Misalltotal Misallrest Misalltop MPK spread
̂ R2

IS R2
OOS RMSE ̂ R2

IS R2
OOS RMSE ̂ R2

IS R2
OOS RMSE ̂ R2

IS R2
OOS RMSE

k = 1 0.676 0.008 0.018 6.622 0.729 0.009 0.019 6.620 -1.056 0.003 0.015 6.639 -1.084 0.018 0.002 6.590
(1.44) (1.49) (-0.76) (-2.43)∗∗
[1.43] [1.48] [-0.76] [-2.42]∗∗

k = 4 1.304 0.013 0.023 10.082 1.396 0.014 0.024 10.078 -1.398 0.002 0.014 10.137 -1.654 0.018 0.003 10.058
(1.95)∗ (2.02)∗∗ (-0.60) (-2.66)∗∗∗
[1.61] [1.67]∗ [-0.51] [-2.24]∗∗

k = 8 1.660 0.013 0.020 12.822 1.777 0.014 0.021 12.817 -1.561 0.002 0.011 12.896 -2.613 0.028 -0.005 12.728
(1.51) (1.57) (-0.43) (-2.53)∗∗
[1.33] [1.38] [-0.39] [-2.26]∗∗

k = 12 2.038 0.015 0.017 14.973 2.181 0.016 0.018 14.967 -2.028 0.002 0.014 15.068 -2.815 0.024 -0.011 14.906
(1.28) (1.32) (-0.41) (-1.87)∗
[1.18] [1.22] [-0.38] [-1.75]∗

t-ratio of Hodrick (1992) with k-1 lags in parentheses. t-ratio of Newey-West (1987) with k-1 lags in square brackets.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Description. This table reports the results of the following predictive regression:

Re
mkt,t:t+k = α+ βzt + ϵt:t+k,

whereRe
mkt,t:t+k is the stockmarket excess returns in k quarters. Stockmarket returns are the value-weighted CRSP

returns in excess of the risk-free rate. The predictive variables zt are aggregate misallocation, misallocation among
non-superstars, misallocation among superstars, and the MPK spread. The sample runs from 1975:Q1 to 2022:Q4.

45



Table 9: Factor risk premiums for empirical risk factors

(1) (2) (3) (4)
Panel A: 25 size×book-to-market portfolios
MKT
 5.945∗∗∗ 5.823∗∗∗ 5.945∗∗∗ 5.343∗∗∗

(10.49) (9.95) (10.81) (8.85)
∆Misalltotal
 0.098∗

(1.81)
∆Misallrest
 0.115∗∗

(2.03)
∆Misalltop
 -0.066∗

(-1.75)
∆MPK spread
 -0.256∗∗∗

(-5.38)
R2

OLS 0.661 0.663 0.666 0.490
MAE 0.021 0.020 0.022 0.018
Panel B: 25 size×momentum portfolios
MKT
 5.409∗∗∗ 5.596∗∗∗ 5.902∗∗∗ 5.399∗∗∗

(7.82) (8.39) (9.71) (9.18)
∆Misalltotal
 0.154∗∗

(2.52)
∆Misallrest
 0.129∗∗

(2.34)
∆Misalltop
 0.012

(0.22)
∆MPK spread
 -0.273∗∗∗

(-7.28)
R2

OLS 0.659 0.663 0.466 0.610
MAE 0.018 0.020 0.022 0.020
GMM robust t-statistics in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Description. This table reports the estimation from the rst-stage GMM with equally weighted errors. The test
portfolio includes 25 size×book-to-market portfolios in Panel A and 25 size×momentum portfolios in Panel B. The
coecient γ represents the price of risk for the corresponding factor. The sample runs from 1975:Q1 to 2022:Q4.
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Table 10: Pricing 35 portfolios by alternative definition of superstars

Top 50 rms sorted on market cap Top 50 rms sorted on sale
(1) (2) (3) (4) (5) (6) (7) (8)

Constant 12.090 10.792 10.978 9.870 14.968 10.838 12.166 14.435
(3.67)∗∗∗ (3.25)∗∗∗ (3.28)∗∗∗ (2.89)∗∗∗ (4.51)∗∗∗ (3.21)∗∗∗ (3.74)∗∗∗ (4.51)∗∗∗
[3.67]∗∗∗ [2.99]∗∗∗ [3.18]∗∗∗ [2.33]∗∗ [3.49]∗∗∗ [3.09]∗∗∗ [3.70]∗∗∗ [3.53]∗∗∗

MKT -0.257 -0.057 -0.057 0.073 -1.089 -0.027 -0.342 -0.931
(-0.25) (-0.05) (-0.05) (0.07) (-1.10) (-0.03) (-0.34) (-0.95)
[-0.22] [-0.04] [-0.05] [0.05] [-0.77] [-0.02] [-0.29] [-0.67]

∆Misalltotal -0.435
(-0.99)
[-0.90]

∆Misallrest -1.189 -1.267
(-0.65) (-0.69)
[-0.62] [-0.65]

∆Misalltop -0.182 -0.034
(-1.55) (-0.54)
[-1.24] [-0.51]

∆MPK spread -0.147 -0.154
(-2.30)∗∗ (-2.67)∗∗∗
[-1.76]∗ [-2.05]∗∗

R2 0.012 0.064 0.038 0.140 0.129 0.040 0.035 0.144
Adj. R2 -0.018 0.006 -0.022 0.086 0.074 -0.020 -0.026 0.091
RMSE 2.701 2.669 2.707 2.560 2.576 2.704 2.712 2.553
Fama-Macbeth t-statistics in parentheses. Shanken t-statistics in square brackets.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Description. This table reports the prices of risk with Fama and MacBeth (1973) and Shanken t-statistics for the
25 size × book-to-market and 10 momentum portfolios. The sample runs from 1975:Q1 to 2023:Q4. Returns and
risk premia are reported in percent per year (quarterly percentages multiplied by four). For robustness, I identify
superstars as the top 50 rms sorted on market cap or sales each quarter.
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Table 11: Predicting economic growth using risk factors

∆Misalltotal ∆Misallrest ∆Misalltop ∆MPK spread
̂ R2 RMSE ̂ R2 RMSE ̂ R2 RMSE ̂ R2 RMSE

Panel A: Per-capita real consumption growth
k = 1 -0.193 0.037 0.992 -0.172 0.030 0.996 -0.349 0.067 0.976 -0.191 0.021 1.000

(-0.83) (-0.77) (-1.37) (-2.38)∗∗
[-0.82] [-0.76] [-1.36] [-2.37]∗∗

k = 4 0.305 0.028 1.830 0.322 0.031 1.827 -0.207 0.007 1.850 -0.687 0.081 1.779
(1.91)∗ (2.07)∗∗ (-1.18) (-2.59)∗∗∗
[2.12]∗∗ [2.27]∗∗ [-1.27] [-2.39]∗∗

k = 8 0.648 0.069 2.420 0.681 0.076 2.411 -0.272 0.007 2.499 -0.855 0.070 2.418
(2.61)∗∗∗ (2.86)∗∗∗ (-0.81) (-2.86)∗∗∗
[2.59]∗∗ [2.84]∗∗∗ [-0.79] [-2.90]∗∗∗

k = 12 0.840 0.071 2.951 0.885 0.079 2.939 -0.420 0.010 3.046 -0.935 0.058 2.972
(2.32)∗∗ (2.60)∗∗∗ (-0.88) (-2.90)∗∗∗
[2.35]∗∗ [2.64]∗∗∗ [-0.87] [-2.98]∗∗∗

Panel B: Industrial production growth
k = 1 -0.255 0.021 1.752 -0.219 0.016 1.757 -0.605 0.066 1.711 0.014 0.000 1.771

(-0.79) (-0.70) (-1.69)∗ (0.09)
[-0.78] [-0.70] [-1.68]∗ [0.09]

k = 4 0.189 0.002 4.309 0.272 0.004 4.305 -1.266 0.049 4.206 -0.217 0.001 4.310
(0.41) (0.57) (-3.64)∗∗∗ (-0.35)
[0.39] [0.54] [-3.52]∗∗∗ [-0.34]

k = 8 0.698 0.012 6.360 0.868 0.019 6.338 -2.261 0.072 6.163 -1.523 0.034 6.288
(1.16) (1.56) (-2.63)∗∗∗ (-2.14)∗∗
[1.16] [1.57] [-2.55]∗∗ [-2.14]∗∗

k = 12 0.603 0.006 7.638 0.833 0.011 7.618 -3.041 0.086 7.324 -1.518 0.024 7.567
(0.72) (1.10) (-2.85)∗∗∗ (-2.00)∗∗
[0.71] [1.10] [-2.82]∗∗∗ [-2.04]∗∗

Panel C: Employment growth
k = 1 -0.221 0.050 0.972 -0.206 0.044 0.975 -0.265 0.040 0.977 -0.021 0.000 0.997

(-1.05) (-1.03) (-1.14) (-0.21)
[-1.05] [-1.02] [-1.14] [-0.21]

k = 4 0.059 0.002 1.543 0.073 0.002 1.542 -0.230 0.013 1.534 -0.217 0.012 1.535
(0.36) (0.43) (-1.96)∗∗ (-0.84)
[0.36] [0.44] [-2.32]∗∗ [-0.80]

k = 8 0.412 0.038 2.089 0.442 0.044 2.083 -0.323 0.013 2.116 -0.632 0.053 2.073
(2.04)∗∗ (2.20)∗∗ (-1.41) (-2.22)∗∗
[2.08]∗∗ [2.26]∗∗ [-1.37] [-2.22]∗∗

k = 12 0.547 0.046 2.413 0.594 0.054 2.403 -0.524 0.025 2.440 -0.654 0.043 2.417
(2.41)∗∗ (2.82)∗∗∗ (-1.54) (-2.41)∗∗
[2.42]∗∗ [2.84]∗∗∗ [-1.52] [-2.47]∗∗

t-ratio of Hodrick (1992) with k−1 lags in parentheses; Newey–West (1987) in square brackets.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Description. This table reports the results of the following predictive regression: Qt:t+k = α+ βzt + ϵt:t+k, where
Q ∈ {CG, IP,E,Re

mkt}. The macroeconomic data to construct this measure are obtained from the Bureau of Eco-
nomic Analysis. Stockmarket returns are the value-weighted CRSP returns in excess of risk-free rate. The predictive
variables zt are changes in the aggregate misallocation and the MPK spread.
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Table 12: Pricing Giglio and Xiu (2021)’s 202 portfolios

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Panel A: Models including MKT factor
Constant 10.479 9.847 9.950 9.652 10.988 9.789 9.738 10.633 10.465

(4.25)∗∗∗ (3.93)∗∗∗ (3.99)∗∗∗ (3.80)∗∗∗ (4.49)∗∗∗ (3.90)∗∗∗ (3.87)∗∗∗ (4.34)∗∗∗ (4.22)∗∗∗
[4.25]∗∗∗ [3.73]∗∗∗ [3.83]∗∗∗ [3.17]∗∗∗ [3.10]∗∗∗ [3.14]∗∗∗ [3.17]∗∗∗ [3.09]∗∗∗ [3.07]∗∗∗

MKT 0.092 0.169 0.166 0.029 -0.336 -0.033 0.005 -0.275 -0.291
(0.10) (0.19) (0.19) (0.03) (-0.39) (-0.04) (0.01) (-0.32) (-0.34)
[0.09] [0.15] [0.15] [0.02] [-0.24] [-0.03] [0.00] [-0.20] [-0.22]

∆Misalltotal -0.345 -0.076 -0.108 -0.027
(-1.68)∗ (-0.47) (-0.66) (-0.16)
[-1.51] [-0.35] [-0.51] [-0.11]

∆Misallrest -0.304 0.010 0.103
(-1.53) (0.06) (0.64)
[-1.38] [0.05] [0.44]

∆Misalltop -0.491 -0.515 -0.311
(-2.16)∗∗ (-2.19)∗∗ (-1.48)
[-1.77]∗ [-1.77]∗ [-1.06]

∆MPK spread -0.960 -0.889 -0.808
(-3.51)∗∗∗ (-3.70)∗∗∗ (-4.02)∗∗∗
[-2.39]∗∗ [-2.59]∗∗ [-2.84]∗∗∗

R2 0.001 0.064 0.046 0.209 0.340 0.238 0.211 0.357 0.386
Adj. R2 -0.004 0.055 0.037 0.201 0.333 0.226 0.199 0.347 0.374
RMSE 2.524 2.449 2.472 2.252 2.057 2.216 2.255 2.036 1.994
Fama-Macbeth t-statistics in parentheses. Shanken t-statistics in square brackets.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Description. This table reports the prices of risk with Fama and MacBeth (1973) and Shanken t-statistics for the
25 portfolios sorted by size and book-to-market ratio, 17 industry portfolios, 25 portfolios sorted by operating prof-
itability and investment, 25 portfolios sorted by size and variance, 35 portfolios sorted by size and net issuance, 25
portfolios sorted by size and accruals, 25 portfolios sorted by size and beta, and 25 portfolios sorted by size and
momentum. The sample runs from 1975:Q1 to 2023:Q4.
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Table 12: Pricing Giglio and Xiu (2021)’s 202 portfolios - continued

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Panel B: Models including MKT, SMB, HML, and UMD factors
Constant 7.550 7.314 7.279 7.555 7.541 7.077 7.154 7.371 7.107

(3.82)∗∗∗ (3.88)∗∗∗ (3.88)∗∗∗ (3.73)∗∗∗ (3.81)∗∗∗ (3.74)∗∗∗ (3.80)∗∗∗ (3.93)∗∗∗ (3.77)∗∗∗
[3.59]∗∗∗ [3.63]∗∗∗ [3.62]∗∗∗ [3.51]∗∗∗ [3.45]∗∗∗ [3.48]∗∗∗ [3.54]∗∗∗ [3.55]∗∗∗ [3.35]∗∗∗

MKT 0.478 0.537 0.545 0.477 0.461 0.591 0.574 0.505 0.564
(0.61) (0.70) (0.71) (0.60) (0.59) (0.77) (0.74) (0.66) (0.73)
[0.46] [0.52] [0.53] [0.46] [0.43] [0.57] [0.56] [0.48] [0.53]

SMB 0.630 0.625 0.624 0.630 0.628 0.616 0.619 0.624 0.614
(1.66)∗ (1.64) (1.64) (1.66)∗ (1.65) (1.62) (1.63) (1.64) (1.62)
[1.16] [1.14] [1.14] [1.16] [1.13] [1.12] [1.13] [1.12] [1.09]

HML 0.966 0.994 0.994 0.967 0.937 0.992 0.993 0.959 0.956
(1.96)∗ (2.02)∗∗ (2.02)∗∗ (1.96)∗ (1.90)∗ (2.02)∗∗ (2.02)∗∗ (1.95)∗ (1.94)∗
[1.39] [1.43] [1.43] [1.39] [1.32] [1.42] [1.43] [1.35] [1.34]

UMD 1.575 1.618 1.619 1.576 1.622 1.614 1.614 1.650 1.646
(2.82)∗∗∗ (2.89)∗∗∗ (2.89)∗∗∗ (2.82)∗∗∗ (2.90)∗∗∗ (2.88)∗∗∗ (2.88)∗∗∗ (2.95)∗∗∗ (2.94)∗∗∗
[1.97]∗ [2.01]∗∗ [2.01]∗∗ [1.97]∗ [1.98]∗∗ [2.00]∗∗ [2.00]∗∗ [2.01]∗∗ [1.99]∗∗

∆Misalltotal 0.082 0.084 0.083 0.100
(0.51) (0.52) (0.51) (0.63)
[0.44] [0.44] [0.44] [0.52]

∆Misallrest 0.091 0.100 0.126
(0.56) (0.62) (0.79)
[0.49] [0.53] [0.65]

∆Misalltop -0.022 -0.060 -0.116
(-0.18) (-0.53) (-1.07)
[-0.16] [-0.45] [-0.87]

∆MPK spread -0.325 -0.320 -0.348
(-2.29)∗∗ (-2.23)∗∗ (-2.51)∗∗
[-1.91]∗ [-1.86]∗ [-2.06]∗∗

R2 0.528 0.532 0.533 0.528 0.542 0.534 0.533 0.544 0.546
Adj. R2 0.519 0.520 0.521 0.516 0.530 0.519 0.519 0.530 0.529
RMSE 1.748 1.744 1.744 1.752 1.727 1.746 1.748 1.727 1.728
Fama-Macbeth t-statistics in parentheses. Shanken t-statistics in square brackets.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 13: Pricing Giglio and Xiu (2021)’s 202 portfolios using value-weighted misallocation

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Panel A: Models including MKT factor
Constant 10.479 10.494 14.534 13.911 13.919 13.948 13.411 13.374 14.375

(4.25)∗∗∗ (4.22)∗∗∗ (5.83)∗∗∗ (5.55)∗∗∗ (5.65)∗∗∗ (5.84)∗∗∗ (5.68)∗∗∗ (5.55)∗∗∗ (5.97)∗∗∗
[4.25]∗∗∗ [3.34]∗∗∗ [4.87]∗∗∗ [4.66]∗∗∗ [3.50]∗∗∗ [4.78]∗∗∗ [4.64]∗∗∗ [3.63]∗∗∗ [4.22]∗∗∗

MKT 0.092 -0.149 -1.223 -1.097 -1.146 -1.139 -0.976 -1.039 -1.310
(0.10) (-0.17) (-1.47) (-1.30) (-1.35) (-1.38) (-1.19) (-1.23) (-1.58)
[0.09] [-0.12] [-1.05] [-0.94] [-0.77] [-0.97] [-0.83] [-0.73] [-0.99]

∆Misalltotal -0.769 -0.434 -0.509 -0.326
(-2.50)∗∗ (-1.94)∗ (-2.19)∗∗ (-1.33)
[-1.95]∗ [-1.53] [-1.73]∗ [-0.85]

∆Misallrest 0.609 0.297 0.384
(2.26)∗∗ (1.46) (1.86)∗
[1.84]∗ [1.15] [1.28]

∆Misalltop -0.613 -0.646 -0.361
(-2.29)∗∗ (-2.37)∗∗ (-1.43)
[-1.88]∗ [-1.89]∗ [-0.99]

∆MPK spread -1.266 -1.048 -0.876
(-3.57)∗∗∗ (-3.57)∗∗∗ (-3.84)∗∗∗
[-2.19]∗∗ [-2.31]∗∗ [-2.64]∗∗∗

R2 0.001 0.127 0.210 0.256 0.300 0.300 0.263 0.343 0.376
Adj. R2 -0.004 0.118 0.202 0.249 0.293 0.289 0.251 0.334 0.363
RMSE 2.524 2.366 2.250 2.183 2.118 2.124 2.179 2.056 2.011
Fama-Macbeth t-statistics in parentheses. Shanken t-statistics in square brackets.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Description. This table reports the prices of risk with Fama and MacBeth (1973) and Shanken t-statistics for 25
portfolios sorted by size and book-to-market ratio, 17 industry portfolios, 25 portfolios sorted by operating prof-
itability and investment, 25 portfolios sorted by size and variance, 35 portfolios sorted by size and net issuance, 25
portfolios sorted by size and accruals, 25 portfolios sorted by size and beta, and 25 portfolios sorted by size and
momentum. The sample runs from 1975:Q1 to 2023:Q4.
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Table 13: Pricing Giglio and Xiu (2021)’s 202 portfolios using value-weighted misallocation
- continued

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Panel A: Models including MKT, SMB, HML, and UMD factors
Constant 7.550 7.473 7.272 7.330 7.838 7.322 7.130 7.783 7.485

(3.82)∗∗∗ (3.71)∗∗∗ (3.92)∗∗∗ (3.87)∗∗∗ (3.87)∗∗∗ (3.97)∗∗∗ (3.85)∗∗∗ (3.86)∗∗∗ (4.05)∗∗∗
[3.59]∗∗∗ [3.48]∗∗∗ [3.68]∗∗∗ [3.63]∗∗∗ [3.29]∗∗∗ [3.72]∗∗∗ [3.59]∗∗∗ [3.29]∗∗∗ [3.45]∗∗∗

MKT 0.478 0.372 0.412 0.395 0.253 0.405 0.443 0.270 0.333
(0.61) (0.47) (0.54) (0.51) (0.32) (0.53) (0.58) (0.34) (0.43)
[0.46] [0.36] [0.41] [0.39] [0.23] [0.40] [0.43] [0.24] [0.31]

SMB 0.630 0.548 0.561 0.566 0.622 0.555 0.570 0.617 0.635
(1.66)∗ (1.45) (1.49) (1.52) (1.66)∗ (1.48) (1.53) (1.65) (1.71)∗
[1.16] [1.01] [1.04] [1.05] [1.09] [1.03] [1.05] [1.08] [1.12]

HML 0.966 0.932 0.917 0.933 0.916 0.917 0.893 0.899 0.865
(1.96)∗ (1.87)∗ (1.84)∗ (1.87)∗ (1.84)∗ (1.84)∗ (1.80)∗ (1.82)∗ (1.75)∗
[1.39] [1.32] [1.30] [1.32] [1.23] [1.30] [1.26] [1.21] [1.17]

UMD 1.575 1.646 1.641 1.660 1.731 1.635 1.624 1.709 1.690
(2.82)∗∗∗ (2.93)∗∗∗ (2.92)∗∗∗ (2.95)∗∗∗ (3.07)∗∗∗ (2.91)∗∗∗ (2.89)∗∗∗ (3.04)∗∗∗ (3.00)∗∗∗
[1.97]∗ [2.04]∗∗ [2.03]∗∗ [2.06]∗∗ [2.02]∗∗ [2.02]∗∗ [2.01]∗∗ [2.00]∗∗ [1.98]∗∗

∆Misalltotal -0.136 -0.132 -0.119 -0.058
(-0.76) (-0.74) (-0.67) (-0.32)
[-0.67] [-0.65] [-0.59] [-0.26]

∆Misallrest -0.051 -0.052 0.083
(-0.27) (-0.28) (0.46)
[-0.24] [-0.25] [0.37]

∆Misalltop 0.040 0.014 0.024
(0.23) (0.08) (0.14)
[0.20] [0.07] [0.11]

∆MPK spread -0.530 -0.509 -0.500
(-2.89)∗∗∗ (-2.76)∗∗∗ (-2.72)∗∗∗
[-2.33]∗∗ [-2.23]∗∗ [-2.20]∗∗

R2 0.528 0.528 0.528 0.529 0.550 0.529 0.533 0.552 0.556
Adj. R2 0.519 0.515 0.516 0.517 0.539 0.514 0.518 0.538 0.540
RMSE 1.748 1.753 1.752 1.751 1.711 1.756 1.748 1.712 1.709
Fama-Macbeth t-statistics in parentheses. Shanken t-statistics in square brackets.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 14: Pricing tangible versus intangible misallocation

Tangible capital Intangible capital
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Constant 12.090 10.964 11.798 13.468 10.224 12.225 13.150 12.183 17.843
(3.67)∗∗∗ (3.11)∗∗∗ (3.33)∗∗∗ (4.01)∗∗∗ (3.10)∗∗∗ (3.66)∗∗∗ (3.94)∗∗∗ (3.69)∗∗∗ (5.67)∗∗∗
[3.67]∗∗∗ [3.05]∗∗∗ [3.33]∗∗∗ [3.03]∗∗∗ [1.71]∗ [3.65]∗∗∗ [3.55]∗∗∗ [2.63]∗∗∗ [3.73]∗∗∗

MKT -0.257 -0.024 -0.194 -0.965 -0.102 -0.283 -0.497 -0.598 -1.777
(-0.25) (-0.02) (-0.18) (-0.94) (-0.10) (-0.27) (-0.47) (-0.59) (-1.87)∗
[-0.22] [-0.02] [-0.15] [-0.65] [-0.05] [-0.23] [-0.38] [-0.39] [-1.13]

∆Misalltotal -0.203 0.069
(-0.49) (0.13)
[-0.47] [0.13]

∆Misallrest -0.041 0.443
(-0.10) (0.88)
[-0.09] [0.78]

∆Misalltop -0.710 -0.897
(-2.21)∗∗ (-2.00)∗∗
[-1.66]∗ [-1.42]

∆MPK spread -1.168 -0.961
(-3.52)∗∗∗ (-2.82)∗∗∗
[-1.93]∗ [-1.84]∗

R2 0.012 0.024 0.013 0.259 0.529 0.012 0.031 0.195 0.191
Adj. R2 -0.018 -0.037 -0.049 0.213 0.499 -0.050 -0.029 0.145 0.141
RMSE 2.701 2.727 2.742 2.375 1.894 2.743 2.716 2.475 2.482
Fama-Macbeth t-statistics in parentheses. Shanken t-statistics in square brackets.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Description. This table reports the prices of risk with Fama and MacBeth (1973) and Shanken t-statistics for the 25
size × book-to-market and 10 momentum portfolios. I use sales as output and net property, plant, and equipment
(ppentq) as physical capital plus intangible capital estimated from Eisfeldt and Papanikolaou (2013). The sample
runs from 1975:Q1 to 2023:Q4. Returns and risk premia are reported in percent per year (quarterly percentages
multiplied by four).
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Table 15: Exposure to changes in the MPK spread - subsample periods

Q1 (low) Q2 Q3 Q4 Q5 (high) Q5–Q1
Panel A: Pre-2000s
Re 10.971∗∗ 10.566∗∗∗ 9.888∗∗∗ 9.995∗∗∗ 7.050∗ -3.922∗

(2.56) (2.85) (2.90) (2.95) (1.83) (-1.86)

CAPM 0.212 0.768 0.889 1.316 -3.161 -3.373
(0.10) (0.64) (0.73) (0.95) (-1.65) (-1.06)

FF3 2.004 0.551 1.126 0.414 -1.249 -3.253
(0.95) (0.39) (0.86) (0.26) (-0.67) (-1.05)

FF5 2.977 -0.409 -0.807 -2.250 -3.554 -6.531∗
(1.28) (-0.27) (-0.66) (-1.56) (-1.66) (-1.80)

Panel B: Post-2000s
Re 11.099∗∗ 9.968∗∗∗ 10.548∗∗∗ 8.465∗∗ 5.755 -5.344∗∗∗

(2.36) (2.64) (2.97) (2.25) (1.28) (-2.83)

CAPM 2.060 2.538∗ 3.371∗∗∗ 1.127 -2.876 -4.936∗∗
(1.00) (1.93) (3.31) (0.71) (-1.46) (-2.44)

FF3 1.876 2.416∗ 3.531∗∗∗ 1.318 -2.856 -4.731∗∗∗
(0.96) (1.84) (3.67) (0.88) (-1.45) (-2.57)

FF5 3.657∗∗ 1.477 2.370∗∗ -1.174 -3.357 -7.013∗∗
(2.06) (1.10) (2.32) (-0.82) (-1.52) (-2.28)

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Description. This table reports value-weighted average excess returns and alphas in annual percentage for port-
folios sorted on exposure to changes in the MPK spread. Panel A reports the results for the subsample 1975:Q1–
2000:Q4. Panel B reports the results for the subsample 2001:Q1–2023:Q4. For each stock, I regress the quarterly
excess returns either on changes in misallocation or each component by a rolling window of 20 quarters (with a
minimum of 12 quarters available). Each quarter, I sort stocks into quintiles based on their misallocation-beta, lag-
ging by one quarter. I hold and rebalance the portfolio every quarter.
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Appendix: Decomposing capital misallocation

A0.1 Equally weighted capital misallocation

In each quarter t, capital misallocation is given by the dispersion in rm-level (log) MPKs in
the economy

σ2
mpk,t =

1

N − 1

N

i=1

(mpkit − µmpk,t)
2 (22)

where σ2
mpk,t and µmpk,t =

1
N

N
i=1mpkit denote the variance and the mean MPK of the whole

sample. Dropping the time subscript for convenience and expanding the variance yield

σ2
mpk =

1

N − 1

N

i=1

(mpki − µmpk)
2 (23)

=
1

N − 1

N

i=1

mpk2i − 2
N

N − 1
µ2
mpk +

N

N − 1
µ2
mpk (24)

Hence,

σ2
mpk +

N

N − 1
µ2
mpk =

1

N − 1

N

i=1

mpk2i (25)

⇐⇒ (N − 1)σ2
mpk +Nµ2

mpk =

N

i=1

mpk2i (26)

Assume that rms are sorted into K portfolios, in which we allow for dierent numbers
of stocks in each portfolio and denote it as Nk, where K

k=1Nk = N1 + N2 + · · · + NK = N .
We can derive Equation (26) analogously for each portfolio with the corresponding variance
σ2
mpk,k and mean µmpk,k. Furthermore, we can decompose the right-hand side of Equation (25)

into

σ2
mpk +

N

N − 1
µ2
mpk =

1

N − 1


N1

i=1

mpk2i +

N2

i=1

mpk2i +   +

NK

i=1

mpk2i


(27)

⇐⇒ σ2
mpk =

1

N − 1

K

k=1

(Nk − 1)σ2
mpk,k +

1

N − 1


K

k=1

Nkµ
2
mpk,k −Nµ2

mpk


(28)

Since the total samplemean equals the weighted average of the subsamplemeans, weighted
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by the number of observations,

µmpk =
N1µmpk,1 +N2µmpk,2 +   +NKµmpk,K

N1 +N2 +   +Nk
(29)

=
1

N

K

k=1

Nkµmpk,k (30)

⇒ Nµ2
mpk =

1

N


K

k=1

Nkµmpk,k

2

(31)

Hence,
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(Nk − 1)σ2
mpk,k +

1

N − 1




K

k=1

Nkµ
2
mpk,k −

1

N


K

k=1

Nkµmpk,k

2

 (32)

=
1

N − 1

K

k=1

(Nk − 1)σ2
mpk,k +

N

N − 1




1

N

K

k=1

Nkµ
2
mpk,k

  
E(µ2

mpk,k)

−


1

N

K

k=1

Nkµmpk,k

2

  
E(µmpk,k)2




(33)

(34)

Recognizing that the second and the third terms capture the second and the (squared) rst
moment or the expected value of the subsample meanMPKs, we can further rewrite the aggre-
gate misallocation as

σ2
mpk =

K

k=1

Nk − 1

N − 1
σ2
mpk,k

  
Within-group misallocation

+
N

N − 1
Var(µmpk,k)

  
Between-group misallocation

(35)

where Var(µmpk) denotes the variance of the portfolio mean MPKs. Thus, we can decompose
the aggregate capital misallocation into the portfolio-specic misallocation, i.e., the misalloca-
tion among the rms in each portfolio and the dispersion in the mean MPKs across portfolios.

To separate superstars, I sort the sample into two portfolios each quarter: the superstar port-
folio which includes superstar rms (k = ∗), and the non-superstar portfolio which includes
the remaining rms (k = 0). The second term of Equation (35) simplies to the case when
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K = 2. Specically,

Var(µmpk,k) =
1

N

2

k=1

Nkµ
2
mpk,k −


1

N

2

k=1

Nkµmpk,k

2

=
N0(N −N0)

N2
µ2
mpk,0 +

N∗(N −N∗)
N2

µ2
mpk,∗ − 2

N0N∗
N2

µmpk,0µmpk,∗

=
N0N∗
N2

(µmpk,0 − µmpk,∗)
2

Hence, we can rewrite Equation (35) in this case as

σ2
mpk =

N0 − 1

N − 1
σ2
mpk,0

  
Misallocation among non-superstars

+
N∗ − 1

N − 1
σ2
mpk,∗

  
Misallocation among superstars

+
N0N∗

N(N − 1)
(µmpk,0 − µmpk,∗)

2

  
MPK spread

(36)

A0.2 Value-weighted capital misallocation

The general formula for the value-weighted variance, assumingno observationwith zeroweight,
has the form

s2w =
N

N − 1

N

i=1

wi(xi − x̄w)
2 (37)

whereN is the number of observations, wi is the weight for the observation xi, x̄w =
N

i=1wixi

is the value-weighted mean of the sample.
Assume the sample splits intoK portfolios, each withNk observations and weightswi such

that i∈k wi = Ωk for each portfolio k. I normalize the weights so that N
i=1wi = 1 and

K

k=1

Ωk =

K

k=1



i∈k
wi =

N

i=1

wi = 1 (38)

For each portfolio k, the weighted variance s2w,k and the weighted mean x̄w,k are given by

s2w,k =
Nk

Nk − 1



i∈k

wi

Ωk
(xi − x̄w,k)

2 (39)

x̄w,k =


i∈k

wi

Ωk
xi ⇐⇒



i∈k
wixi = Ωkx̄w,k (40)
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Then total weighted mean x̄w is of the form

x̄w =

N

i=1

wixi =

K

k=1



i∈k
wixi =

K

k=1

Ωkx̄w,k

From the total weighted variance, we have

s2w =
N

N − 1

N

i=1

wi(xi − x̄w)
2

=
N

N − 1

K

k=1



i∈k
wi(xi − x̄w)

2

=
N

N − 1

K

k=1



i∈k
wi


(xi − x̄w,k)

2 + 2(xi − x̄w,k)(x̄w,k − x̄w) + (x̄w,k − x̄w)
2


Consider the cross-term

K

k=1



i∈k
wi(xi − x̄w,k)(x̄w,k − x̄w) =

K

k=1

(x̄w,k − x̄w)


i∈k
wi(xi − x̄w,k)

=

K

k=1

(x̄w,k − x̄w)(


i∈k
wixi − x̄w,k



i∈k
wi)

=

K

k=1

(x̄w,k − x̄w)(Ωkx̄w,k − Ωkx̄w,k)

= 0

Thus,

s2w =
N

N − 1




K

k=1



i∈k
wi(xi − x̄w,k)

2

  
Within-group variances

+

K

k=1



i∈k
wi(x̄w,k − x̄w)

2

  
Between-group variance




The rst term represents the within-group variances, and the second term represents the
between-group variance, i.e. the weighted variance of the subsample means from the total
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mean. We can write the within-group variances as

K

k=1



i∈k
wi(xi − x̄w,k)

2 =

K

k=1

Ωk



i∈k

wi

Ωk
(xi − x̄w,k)

2

=

K

k=1

Nk − 1

Nk
Ωks

2
w,k

where wi
Ωk

is the weight within each portfolio such that i∈k
wi
Ωk

= 1. For the between-group
variance,

K

k=1



i∈k
wi(x̄w,k − x̄w)

2 =

K

k=1

(x̄w,k − x̄w)
2


i∈k
wi

=

K

k=1

Ωk(x̄w,k − x̄w)
2

Combining both terms, we have:

s2w =
N

N − 1


K

k=1

Nk − 1

Nk
Ωks

2
w,k +

K

k=1

Ωk(x̄w,k − x̄w)
2



where Ωk =


i∈k wi, x̄w =
N

i=1wixi, and x̄w,k =


i∈k
wi
Ωk

xi.
Given K = 2, the formula simplies to

s2w =
N

N − 1


N1 − 1

N1
Ω1s

2
w,1 +

N2 − 1

N2
Ω2s

2
w,2 + Ω1(x̄w,1 − x̄w)

2 + Ω2(x̄w,2 − x̄w)
2
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Online Appendix: Additional results

Figure A1: Market concentration and capital misallocation
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Description. This gure shows the rising trend in market concentration and aggregate capital misallocation. Panel
A plots the market cap of top 10, 20, and 50 superstar rms by size and market power over the total market cap in
percentage. Panel B plots the dispersion in MPK across rms, where MPK is the log output-to-capital (measured
by sale/cogs). The sample is annual from 1975 to 2023.
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Figure A2: Changes in capital misallocation against NBER recessions
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Description. This gure plots the changes in aggregate misallocation ∆σ2
mpk,t, changes in misallocation in

non-superstars ∆σ2
mpk,t0, changes in misallocation in superstars ∆σ2

mpk,t∗, and changes in the MPK spread
∆Var(µmpk,k). The sample is from 1975:Q1 to 2023:Q4. In each quarter, capital misallocation σ2

mpk,t is the cross-
sectional dispersion of MPK across rms. The changes in misallocation are the annual changes in capital misallo-
cation:

∆σ2
mpk,t = σ2

mpk,t − σ2
mpk,t−4,

whose level can be decomposed into:

σ2
mpk  

Total misallocation (Misalltotal)

=
N0 − 1

N − 1
σ2
mpk,0

  
Misallocation within non-superstars (Misallrest)

+
N∗ − 1

N − 1
σ2
mpk,∗

  
Misallocation within superstars (Misalltop)

+
N0N∗

N(N − 1)
(µmpk,0 − µmpk,∗)

2

  
MPK spread
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Table A1: Significance of ∆MPK spread - simulation results

Frequency Percent
∗∗∗ p < 001 2 .4
∗∗ p < 005 24 4.8
∗ p < 010 36 7.2
∗ p < 1 438 88
Total 500 100

Description. This table reports the signicance of the price of risk of changes in theMPK spread in the second-stage
Fama-MacBeth regression. Each simulation selects randomly 50 rms to the superstar portfolio.
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Table A2: Exposure to changes in the MPK spread (equally weighted results)

Q1 (low) Q2 Q3 Q4 Q5 (high) Q5–Q1
Panel A: Expected return
Re 16.965∗∗∗ 13.699∗∗∗ 12.935∗∗∗ 12.607∗∗∗ 14.025∗∗∗ -2.940∗∗

(4.25) (4.35) (4.26) (3.93) (3.68) (-2.56)
Panel B: CAPM
MKT 1.403∗∗∗ 1.138∗∗∗ 1.115∗∗∗ 1.171∗∗∗ 1.332∗∗∗ -0.072∗

(18.73) (21.34) (21.07) (21.50) (19.49) (-1.92)
CAPM 4.712∗∗ 3.464∗∗ 2.990∗∗ 2.357 2.466 -2.245∗

(2.32) (2.28) (2.09) (1.57) (1.28) (-1.91)
Panel C: FF3 + UMD
MKT 1.091∗∗∗ 0.952∗∗∗ 0.941∗∗∗ 0.966∗∗∗ 1.029∗∗∗ -0.062

(21.56) (30.84) (32.38) (33.46) (27.10) (-1.42)
SMB 1.189∗∗∗ 0.825∗∗∗ 0.772∗∗∗ 0.854∗∗∗ 1.144∗∗∗ -0.045

(14.76) (16.25) (16.24) (18.39) (18.21) (-0.60)
HML -0.013 0.147∗∗∗ 0.136∗∗∗ 0.109∗∗∗ 0.007 0.020

(-0.18) (4.20) (4.36) (2.82) (0.13) (0.36)
UMD -0.158∗ -0.097∗∗ -0.089∗∗ -0.126∗∗ -0.177∗∗ -0.020

(-1.80) (-2.52) (-2.02) (-2.30) (-2.47) (-0.42)
FF3+UMD 6.504∗∗∗ 3.955∗∗∗ 3.442∗∗∗ 3.257∗∗∗ 4.323∗∗∗ -2.180∗

(4.37) (4.75) (4.44) (3.65) (3.18) (-1.82)
Panel D: FF5
MKT 1.108∗∗∗ 0.988∗∗∗ 0.986∗∗∗ 1.021∗∗∗ 1.065∗∗∗ -0.043

(19.57) (31.72) (34.85) (34.28) (24.84) (-0.97)
SMB 1.187∗∗∗ 0.860∗∗∗ 0.818∗∗∗ 0.907∗∗∗ 1.171∗∗∗ -0.015

(15.67) (17.31) (18.57) (23.47) (17.71) (-0.22)
HML -0.045 0.087∗ 0.052 0.006 -0.032 0.013

(-0.45) (1.68) (1.08) (0.12) (-0.42) (0.15)
RMW -1.286∗∗∗ 0.126 0.471∗∗ 0.364∗∗ -0.672∗∗ 0.614

(-2.87) (0.64) (2.11) (2.11) (-2.40) (1.45)
CMA 1.017∗ 0.717∗∗∗ 0.809∗∗∗ 1.085∗∗∗ 0.964∗∗ -0.054

(1.94) (2.78) (3.20) (3.72) (2.09) (-0.13)
FF5 6.104∗∗∗ 2.397∗∗∗ 1.430∗ 0.861 2.933∗∗ -3.172∗∗

(4.37) (2.85) (1.79) (1.15) (2.51) (-2.39)
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Description. This table reports equally weighted average excess returns and alphas in annual percentage for port-
folios sorted on exposure to changes in the MPK spread. For each stock, I regress the quarterly excess returns either
on changes in misallocation or on each component by a rolling window of 20 quarters (with a minimum of 12 quar-
ters available). Each quarter, I sort stocks into quintiles based on their misallocation-beta, lagging by one quarter. I
hold and rebalance the portfolio every quarter. The sample runs from 1975:Q1 to 2023:Q4.
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Table A3: Characteristics of stocks in the MPK spread-mimicking portfolios

Low Q2 Q3 Q4 High High–Low t(High–Low)
∆MPK spread -0.592 -0.198 -0.022 0.169 0.513 1.105 (2.43)
Market cap 17,492.180 38,355.184 49,901.367 29,264.824 25,961.316 8,469.136 (3.36)
Markup ratio 1.785 1.680 1.682 1.825 1.934 0.148 (4.54)
Book-to-market 0.501 0.490 0.474 0.478 0.461 -0.039 (-1.94)
Innovation 19.908 29.970 36.518 18.421 18.042 -1.866 (-1.73)
Duration 62.301 80.425 81.964 79.883 64.740 2.439 (2.35)
Investment 2,179.251 6,231.840 12,381.994 6,100.768 4,392.167 2,212.916 (4.32)
Physical capital 3,754.690 9,973.484 9,830.880 7,848.565 4,537.075 782.385 (2.29)
Intangible capital 1,812.195 2,899.301 2,930.864 2,621.818 2,197.016 384.821 (4.26)

Description. This table reports the value-weighted average characteristics of stocks in eachMPK spread-mimicking
portfolio. The sample runs from 1975:Q1 to 2023:Q4.
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Table A4: Predicting aggregate patent ratio

∆Misalltotal ∆Misallrest ∆Misalltop ∆MPK spread
̂ R2 RMSE ̂ R2 RMSE ̂ R2 RMSE ̂ R2 RMSE

k = 1 -0.039 0.003 0.021 0.022 0.001 0.021 -0.373 0.002 0.021 -6.769 0.154 0.019
(-0.61) (0.36) (-0.39) (-4.27)∗∗∗
[-0.60] [0.36] [-0.38] [-4.19]∗∗∗

k = 2 0.048 0.003 0.027 0.012 0.000 0.027 1.092 0.010 0.027 -8.501 0.145 0.025
(0.53) (0.13) (0.84) (-4.05)∗∗∗
[0.49] [0.13] [0.90] [-4.52]∗∗∗

k = 3 -0.074 0.005 0.033 -0.104 0.009 0.033 -0.734 0.003 0.033 -4.824 0.032 0.033
(-0.58) (-0.69) (-0.58) (-2.70)∗∗∗
[-0.57] [-0.67] [-0.53] [-2.65]∗∗

k = 4 -0.033 0.001 0.038 -0.006 0.000 0.038 1.724 0.013 0.038 -5.373 0.030 0.038
(-0.25) (-0.03) (1.13) (-2.20)∗∗
[-0.24] [-0.03] [1.14] [-2.60]∗∗

k = 5 -0.008 0.000 0.045 -0.077 0.002 0.045 0.357 0.000 0.045 -4.901 0.018 0.045
(-0.04) (-0.33) (0.21) (-1.86)∗
[-0.04] [-0.33] [0.21] [-2.02]∗∗

k = 6 -0.248 0.016 0.050 -0.264 0.018 0.050 0.792 0.001 0.051 -15.007 0.021 0.050
(-0.86) (-0.91) (0.45) (-2.34)∗∗
[-0.84] [-0.90] [0.47] [-2.06]∗∗

t-ratio of Hodrick (1992) with k−1 lags in parentheses; Newey–West (1987) in square brackets.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Description. This table reports the results of the following predictive regression:

It:t+k = α+ βzt + ϵt:t+k,

where It:t+k is the innovation growth in k quarters. The predictive variables zt are changes in the aggregate misal-
location and the MPK spread. The columns show results for k = 1, 4, 8, 12 and 20 quarters. Following Bae, Bailey,
and Kang (2021), I construct the innovation proxy It as the natural logarithm of one plus the number of patent
applications divided by the population. The number of patents granted each year is from the US Patent Trademark
Oce (USPTO) and the US population is from the U.S. Bureau of Economic Analysis (BEA). The aggregate patent
ratio equals = log(1 + # patents/population). The sample is at an annual frequency from 1975 to 2020.
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Table A5: Pricing 35 portfolios - Decomposition using financial constraints

Kaplan-Zingales (KZ) Index Whited-Wu (WW) Index
(1) (2) (3) (4) (5) (6) (7) (8)

Constant 12.090 10.792 10.914 18.735 11.921 10.539 13.710 11.410
(3.67)∗∗∗ (3.25)∗∗∗ (3.33)∗∗∗ (5.02)∗∗∗ (3.19)∗∗∗ (3.10)∗∗∗ (3.71)∗∗∗ (3.43)∗∗∗
[3.67]∗∗∗ [2.99]∗∗∗ [2.98]∗∗∗ [3.72]∗∗∗ [3.19]∗∗∗ [2.85]∗∗∗ [3.46]∗∗∗ [2.86]∗∗∗

MKT -0.257 -0.057 -0.124 -2.297 -0.208 0.015 -0.823 -0.109
(-0.25) (-0.05) (-0.12) (-2.01)∗∗ (-0.19) (0.01) (-0.75) (-0.11)
[-0.22] [-0.04] [-0.10] [-1.37] [-0.17] [0.01] [-0.62] [-0.08]

∆Misalltotal -0.435
(-0.99)
[-0.90]

∆Misallrest -0.513 -0.445
(-1.22) (-0.97)
[-1.08] [-0.88]

∆Misalltop 0.879 -0.307
(2.17)∗∗ (-1.10)
[1.59] [-1.01]

∆MPK spread -0.027 0.475
(-0.08) (1.35)
[-0.07] [1.12]

R2 0.012 0.064 0.093 0.351 0.013 0.060 0.092 0.048
Adj. R2 -0.018 0.006 0.036 0.310 -0.049 0.001 0.036 -0.011
RMSE 2.701 2.669 2.629 2.224 2.741 2.676 2.629 2.692
Fama-Macbeth t-statistics in parentheses. Shanken t-statistics in square brackets.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Description. This table reports the prices of risk with Fama and MacBeth (1973) and Shanken t-statistics for the
25 portfolios sorted by size and book-to-market ratio and 10 portfolios sorted by momentum. Superstar rms are
in the bottom 5% in their industries by their nancial constraints. As proxies for nancial constraint, I use Kaplan
and Zingales (1997)’s (KZ) index and Whited and Wu (2006)’s (WW) index. The higher the KZ index or the WW
index, the higher the likelihood of nancial constraint.
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Table A6: Pricing 35 portfolios excluding tech industries

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Constant 12.090 10.746 10.676 11.536 13.470 11.529 11.251 13.618 12.718

(3.67)∗∗∗ (3.26)∗∗∗ (3.23)∗∗∗ (3.53)∗∗∗ (4.07)∗∗∗ (3.75)∗∗∗ (3.65)∗∗∗ (4.23)∗∗∗ (4.13)∗∗∗
[3.67]∗∗∗ [2.99]∗∗∗ [2.93]∗∗∗ [3.38]∗∗∗ [2.16]∗∗ [3.55]∗∗∗ [3.51]∗∗∗ [2.21]∗∗ [1.97]∗

MKT -0.257 -0.063 -0.032 -0.301 -0.901 -0.314 -0.225 -0.927 -0.627
(-0.25) (-0.06) (-0.03) (-0.30) (-0.89) (-0.32) (-0.23) (-0.92) (-0.65)
[-0.22] [-0.05] [-0.02] [-0.25] [-0.45] [-0.26] [-0.19] [-0.46] [-0.30]

∆Misalltotal -0.441 -0.052 -0.164 0.284
(-1.12) (-0.19) (-0.62) (0.72)
[-1.01] [-0.17] [-0.57] [0.38]

∆Misallrest -0.480 -0.018 -0.198
(-1.10) (-0.06) (-0.72)
[-0.99] [-0.06] [-0.34]

∆Misalltop -0.235 -0.207 0.163
(-1.08) (-0.95) (0.75)
[-1.01] [-0.89] [0.35]

∆MPK spread -1.171 -1.188 -1.259
(-3.63)∗∗∗ (-4.20)∗∗∗ (-4.40)∗∗∗
[-1.92]∗ [-2.19]∗∗ [-2.09]∗∗

R2 0.012 0.080 0.076 0.081 0.474 0.091 0.083 0.475 0.513
Adj. R2 -0.018 0.023 0.018 0.024 0.442 0.003 -0.005 0.424 0.448
RMSE 2.701 2.647 2.653 2.645 2.001 2.673 2.684 2.032 1.988
Fama-Macbeth t-statistics in parentheses. Shanken t-statistics in square brackets.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Description. This table reports the prices of risk with Fama and MacBeth (1973) and Shanken t-statistics for the
25 portfolios sorted by size and book-to-market ratio and 10 portfolios sorted by momentum. Superstar rms are
dened by the top 5% in their industries by the markup share, using two-digit SIC codes. In this analysis, I exclude
the tech industries with the two-digit SIC code of "73".
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Table A7: Pricing Giglio and Xiu (2021)’s 202 test portfolios - using Hoberg and Phillips
(2016)’s 300 industry classification

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Constant 10.628 12.403 11.509 11.335 10.464 14.040 14.125 11.862 12.459

(2.84)∗∗∗ (3.14)∗∗∗ (2.96)∗∗∗ (3.04)∗∗∗ (2.80)∗∗∗ (3.54)∗∗∗ (3.51)∗∗∗ (3.05)∗∗∗ (3.36)∗∗∗
[2.83]∗∗∗ [2.84]∗∗∗ [2.84]∗∗∗ [2.87]∗∗∗ [2.21]∗∗ [2.88]∗∗∗ [2.82]∗∗∗ [2.44]∗∗ [2.70]∗∗∗

MKT -0.569 -1.072 -0.810 -0.918 -1.204 -1.583 -1.769 -1.564 -1.696
(-0.40) (-0.74) (-0.56) (-0.65) (-0.84) (-1.11) (-1.23) (-1.07) (-1.18)
[-0.31] [-0.55] [-0.43] [-0.49] [-0.56] [-0.76] [-0.84] [-0.73] [-0.81]

∆Misalltotal -0.480 -0.631 -0.589 -0.227
(-1.80)∗ (-2.18)∗∗ (-2.09)∗∗ (-0.98)
[-1.49] [-1.67]∗ [-1.58] [-0.72]

∆Misallrest -0.264 -0.468 -0.215
(-1.29) (-2.01)∗∗ (-1.14)
[-1.10] [-1.53] [-0.83]

∆Misalltop -0.123 -0.121 -0.136
(-1.81)∗ (-1.79)∗ (-2.01)∗∗
[-1.43] [-1.25] [-1.41]

∆MPK spread -0.766 -0.643 -0.584
(-2.99)∗∗∗ (-2.90)∗∗∗ (-2.66)∗∗∗
[-2.20]∗∗ [-2.11]∗∗ [-1.94]∗

R2 0.038 0.165 0.099 0.169 0.467 0.292 0.401 0.543 0.555
Adj. R2 0.033 0.156 0.090 0.161 0.462 0.282 0.391 0.536 0.546
RMSE 3.440 3.214 3.338 3.205 2.567 2.966 2.730 2.382 2.357
Fama-Macbeth t-statistics in parentheses. Shanken t-statistics in square brackets.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Description. This table reports the prices of risk with Fama and MacBeth (1973) and Shanken t-statistics for the
25 portfolios sorted by size and book-to-market ratio, 17 industry portfolios, 25 portfolios sorted by operating prof-
itability and investment, 25 portfolios sorted by size and variance, 35 portfolios sorted by size and net issuance, 25
portfolios sorted by size and accruals, 25 portfolios sorted by size and beta, and 25 portfolios sorted by size and
momentum. Superstar rms are dened by the top 5% in their industries by the markup share, using 300 industry
classication from Hoberg and Phillips (2016). The sample runs from 1975 to 2022.
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Table A8: Cross-sectional asset pricing tests - alternative measure for intangible capital

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Constant 20.904 19.552 19.635 20.890 19.656 20.172 20.208 17.806 18.174

(6.96)∗∗∗ (7.43)∗∗∗ (7.47)∗∗∗ (7.24)∗∗∗ (6.75)∗∗∗ (7.57)∗∗∗ (7.61)∗∗∗ (7.31)∗∗∗ (7.64)∗∗∗
[5.49]∗∗∗ [6.14]∗∗∗ [6.18]∗∗∗ [5.69]∗∗∗ [4.44]∗∗∗ [5.65]∗∗∗ [5.81]∗∗∗ [4.53]∗∗∗ [4.81]∗∗∗

MKT -11.685 -9.675 -9.761 -10.864 -9.621 -10.051 -10.137 -7.748 -8.049
(-2.93)∗∗∗ (-2.69)∗∗ (-2.72)∗∗∗ (-2.86)∗∗∗ (-2.54)∗∗ (-2.78)∗∗∗ (-2.81)∗∗∗ (-2.26)∗∗ (-2.37)∗∗
[-2.09]∗∗ [-1.95]∗ [-1.97]∗ [-2.02]∗ [-1.54] [-1.86]∗ [-1.91]∗ [-1.29] [-1.36]

SMB 2.648 2.375 2.381 2.544 2.855 2.560 2.497 2.840 2.862
(1.62) (1.45) (1.45) (1.55) (1.73)∗ (1.56) (1.52) (1.72)∗ (1.73)∗
[1.02] [0.93] [0.93] [0.97] [0.96] [0.94] [0.93] [0.91] [0.93]

HML 2.787 2.578 2.545 2.383 2.133 2.739 2.713 2.598 2.650
(1.13) (1.05) (1.03) (0.95) (0.85) (1.11) (1.10) (1.05) (1.08)
[0.71] [0.67] [0.67] [0.60] [0.47] [0.67] [0.68] [0.56] [0.58]

∆Misalltotal -0.260 -0.381 -0.371 -0.144
(-0.79) (-1.11) (-1.08) (-0.46)
[-0.61] [-0.78] [-0.78] [-0.27]

∆Misallrest -0.223 -0.352 -0.172
(-0.70) (-1.05) (-0.55)
[-0.53] [-0.74] [-0.33]

∆Misalltop -0.101 -0.133 -0.048
(-0.77) (-1.01) (-0.35)
[-0.53] [-0.68] [-0.20]

∆MPK spread -0.463 -0.492 -0.458
(-3.83)∗∗∗ (-3.92)∗∗∗ (-3.64)∗∗∗
[-2.36]∗∗ [-2.30]∗∗ [-2.16]∗∗

R2 0.568 0.559 0.557 0.563 0.629 0.591 0.578 0.672 0.673
Adj. R2 0.542 0.524 0.522 0.528 0.599 0.549 0.535 0.639 0.632
RMSE 1.814 1.851 1.854 1.842 1.698 1.800 1.829 1.612 1.626
Fama-Macbeth t-statistics in parentheses. Shanken t-statistics in square brackets.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Description. This table reports the prices of risk with Fama and MacBeth (1973) and Shanken t-statistics for the 25
size × book-to-market, 10 momentum, 25 size and operating protability, and 25 size and investment portfolios. I
obtain intangible capital from Peters and Taylor (2017), accessed via WRDS. The sample runs from 1975 to 2022.

69



Table A9: Cross-sectional asset pricing tests - annual frequency

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Constant 21.248 21.022 20.335 20.741 24.741 19.322 20.304 24.218 23.201

(7.74)∗∗∗ (7.62)∗∗∗ (7.60)∗∗∗ (6.72)∗∗∗ (8.15)∗∗∗ (7.59)∗∗∗ (6.73)∗∗∗ (8.06)∗∗∗ (7.03)∗∗∗
[6.05]∗∗∗ [4.75]∗∗∗ [4.56]∗∗∗ [5.03]∗∗∗ [4.20]∗∗∗ [4.87]∗∗∗ [5.00]∗∗∗ [4.15]∗∗∗ [3.86]∗∗∗

MKT -12.531 -12.336 -11.645 -13.558 -16.363 -10.691 -13.068 -15.715 -16.189
(-3.54)∗∗∗ (-3.45)∗∗∗ (-3.31)∗∗∗ (-3.46)∗∗∗ (-4.31)∗∗∗ (-3.14)∗∗∗ (-3.39)∗∗∗ (-4.16)∗∗∗ (-3.93)∗∗∗
[-2.52]∗∗ [-2.02]∗∗ [-1.87]∗ [-2.38]∗∗ [-2.14]∗∗ [-1.88]∗ [-2.32]∗∗ [-2.06]∗∗ [-2.07]∗∗

SMB 2.223 2.214 2.096 2.805 2.270 1.889 2.798 2.209 2.608
(1.53) (1.51) (1.43) (1.67) (1.55) (1.30) (1.66) (1.51) (1.55)
[0.94] [0.80] [0.74] [1.00] [0.71] [0.70] [1.00] [0.69] [0.75]

HML 2.976 3.269 3.449 3.030 3.540 3.689 3.128 3.788 3.714
(1.68)∗ (1.83)∗ (1.94)∗ (1.50) (1.99)∗ (2.07)∗∗ (1.56) (2.14)∗∗ (1.86)∗
[1.04] [0.97] [1.00] [0.91] [0.91] [1.12] [0.94] [0.98] [0.90]

∆Misalltotal 0.945 0.829 0.231 0.566
(2.96)∗∗∗ (2.75)∗∗∗ (0.81) (1.97)∗
[1.80]∗ [1.71]∗ [0.57] [0.99]

∆Misallrest 1.087 0.902 0.119
(2.95)∗∗∗ (2.85)∗∗∗ (0.42)
[1.74]∗ [1.78]∗ [0.22]

∆Misalltop -0.185 -0.177 -0.078
(-0.81) (-0.79) (-0.36)
[-0.56] [-0.54] [-0.19]

∆MPK spread -1.311 -1.028 -1.037
(-4.85)∗∗∗ (-4.40)∗∗∗ (-4.08)∗∗∗
[-2.44]∗∗ [-2.20]∗∗ [-2.17]∗∗

R2 0.494 0.505 0.512 0.550 0.543 0.525 0.551 0.555 0.631
Adj. R2 0.465 0.465 0.473 0.514 0.506 0.476 0.505 0.510 0.584
RMSE 2.162 2.161 2.146 2.060 2.077 2.139 2.080 2.069 1.905
Fama-Macbeth t-statistics in parentheses. Shanken t-statistics in square brackets.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Description. This table reports the prices of risk with Fama and MacBeth (1973) and Shanken t-statistics for the
25 size × book-to-market, 10 momentum, 10 investment, and 10 operating protability portfolios. The sample runs
from 1975 to 2023. Returns and risk premia are reported in percent per year.

70


